首页> 外文期刊>IEEE Transactions on Power Systems >Importance Sampling Based Intelligent Test Set Generation for Validating Operating Rules Used in Power System Operational Planning
【24h】

Importance Sampling Based Intelligent Test Set Generation for Validating Operating Rules Used in Power System Operational Planning

机译:基于重要性采样的智能测试集生成,用于验证电力系统运营规划中使用的运行规则

获取原文
获取原文并翻译 | 示例

摘要

Decision tree based machine learning methods find a great deal of application in power system reliability assessment studies, wherein essential knowledge in the form of operating rules or guidelines are produced that help operators maneuver the system away from insecurity. Independent test sets are generally used to validate these rules, with the motivation of estimating their classification accuracy and error rates, apart from checking their performance against some interesting situations. This paper proposes an importance sampling based method to generate intelligent test set for validating operating rules. The method is applied for testing decision tree rules derived against voltage collapse problems in western regions of the French power system, and is seen to produce test sets at lesser computation that estimates the rule's classification errors with good accuracy. For a given computation, it also provides richer information on critical operating conditions for which the rule is vulnerable, which helps in further improving the rules.
机译:基于决策树的机器学习方法在电力系统可靠性评估研究中得到了广泛的应用,其中产生了以操作规则或指导方针形式出现的基本知识,可帮助操作员操纵系统以摆脱不安全感。独立测试集通常用于验证这些规则,其动机是估计它们的分类准确性和错误率,此外还要针对某些有趣的情况检查其性能。本文提出了一种基于重要性抽样的方法来生成用于验证操作规则的智能测试集。该方法适用于测试针对法国电力系统西部地区的电压崩溃问题得出的决策树规则,并且可以在较少的计算量下生成测试集,从而可以很好地估算规则的分类误差。对于给定的计算,它还提供了有关规则易受攻击的关键操作条件的更丰富的信息,这有助于进一步改进规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号