首页> 外文期刊>IEEE Transactions on Power Systems >Data-Driven Partitioning of Power Networks Via Koopman Mode Analysis
【24h】

Data-Driven Partitioning of Power Networks Via Koopman Mode Analysis

机译:通过Koopman模式分析对电力网络进行数据驱动的分区

获取原文
获取原文并翻译 | 示例

摘要

This paper applies a new technique for modal decomposition based solely on measurements to test systems and demonstrates the technique's capability for partitioning a power network, which determines the points of separation in an islanding strategy. The mathematical technique is called the Koopman mode analysis (KMA) and stems from a spectral analysis of the so-called Koopman operator. Here, KMA is numerically approximated by applying an Arnoldi-like algorithm recently first applied to power system dynamics. In this paper we propose a practical data-driven algorithm incorporating KMA for network partitioning. Comparisons are made with two techniques previously applied for the network partitioning: spectral graph theory which is based on the eigenstructure of the graph Laplacian, and slow-coherency which identifies coherent groups of generators for a specified number of low-frequency modes. The partitioning results share common features with results obtained with graph theory and slow-coherency-based techniques. The suggested partitioning method is evaluated with two test systems, and similarities between Koopman modes and Laplacian eigenvectors are showed numerically and elaborated theoretically.
机译:本文将一种仅基于测量的模态分解新技术应用于测试系统,并演示了该技术对电力网络进行分区的能力,该能力确定了孤岛策略中的分离点。这种数学技术称为Koopman模式分析(KMA),它源于所谓Koopman算子的频谱分析。在此,通过应用最近首次应用于电力系统动力学的类Arnoldi算法在数值上近似KMA。在本文中,我们提出了一种实用的数据驱动算法,该算法结合了KMA进行网络分区。使用先前用于网络划分的两种技术进行比较:基于图拉普拉斯算子本征结构的频谱图理论,以及为指定数量的低频模式识别发生器的相干组的慢相干性。划分结果与图论和基于慢相干性的技术获得的结果具有共同的特征。通过两个测试系统对建议的划分方法进行了评估,并在数值上显示了库普曼模式与拉普拉斯特征向量之间的相似性,并在理论上进行了阐述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号