首页> 外文期刊>IEEE Transactions on Power Systems >Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction
【24h】

Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction

机译:电力系统的等级深度学习机在线瞬态稳定性预测

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a hierarchical deep learning machine (HDLM) to efficiently achieve both quantitative and qualitative online transient stability prediction (TSP). For the sake of improving its online efficiency, multiple generators' fault-on trajectories as well as the two closest data-points in pre-/post-fault stages are acquired by PMUs to form its raw inputs. An anti-noise graphical transient characterization technique is tactfully designed to transform multiplex trajectories into 2-D images, within which system-wide transients are concisely described. Then, following the divide-and-conquer philosophy, the HDLM trains a two-level convolutional neural network (CNN) based regression model. With stability margin regressions hierarchically refined, it manages to perform reliable and adaptive online TSP almost immediately after fault clearance. Test results on the IEEE 39-bus test system and the real-world Guangdong Power Grid in South China demonstrate the HDLM's superior performances on both stability status and stability margin predictions.
机译:本文开发了一个分层深度学习机(HDLM),以有效地实现定量和定性的在线瞬态稳定预测(TSP)。为了提高其在线效率,通过PMU可以通过PMU来形成多个发电机的故障轨迹以及预故障后级中的两个最近的数据点来形成其原始输入。抗噪声图形瞬态表征技术是为了将多路复用轨迹转换为2-D图像的抗噪声图形瞬态表征技术,在该图像中,在该图像中,在该图像内进行了简洁地描述了系统宽的瞬变。然后,遵循分裂和征服哲学,HDLM列举了基于两级的卷积神经网络(CNN)的回归模型。具有稳定性的边缘回归分层精制,它在故障间隙后几乎立即进行可靠和适应的在线TSP。 IEEE 39总线测试系统的测试结果和华南地区广东电网的现实世界展示了HDLM对稳定状态和稳定性保证金预测的卓越表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号