首页> 外文期刊>IEEE Transactions on Power Systems >Application of Multi-Stage Homotopy Analysis Method for Power System Dynamic Simulations
【24h】

Application of Multi-Stage Homotopy Analysis Method for Power System Dynamic Simulations

机译:多级同型分析方法的应用动力系统动态模拟

获取原文
获取原文并翻译 | 示例

摘要

Homotopy analysismethod (HAM) is a popular semi-analytical method used widely in applied sciences. It stands out from the rest of the semi-analytical methods as it provides a family of solutions to nonlinear equations, including ordinary differential equations (ODEs), partial differential equations, etc. The convergence characteristics of the solutions can be varied by changing an auxiliary parameter ((h) over bar) in HAM. The convergence region of solution of ODEs using HAM can be improved by applying it over multiple intervals of time, which is referred to as multi-stage HAM (MHAM). In this paper, MHAM models for the IEEE Model 2.2 synchronous machine, IEEE Type-1 excitation system, first-order governor and first-order turbine models have been developed. The applicability of MHAM for power system dynamic simulations has been investigated in this paper using seven widely used test systems ranging from 10 generators 39 bus systems to 4092 generators 13 659 bus systems. The effect of number of terms, (h) over bar and the time step on the accuracy and stability of the solution has been studied. The effectiveness of MHAM has been compared with the modified Euler (ME) and midpoint Trapezoidal (TrapZ) methods. The accuracy of MHAM has been found to be comparable with ME and TrapZ methods for the values of (h) over bar between -1.05 and -0.95. The best accuracy is obtained for (h) over bar = -1.0, which is a special case of MHAM called multi-stage homotopy perturbation method (MHPM). In this paper, it is also shown that MHPM is equivalent to multi-stage adomian decomposition method, which has been recently explored for large power system simulations.
机译:同型分析(火腿)是一种广泛应用于应用科学的流行半分析方法。它从其他半分析方法中脱颖而出,因为它为非线性方程提供了一系列解决方案,包括普通微分方程(ODES),部分微分方程等。通过改变辅助来改变解决方案的收敛特性火腿中的参数((h)框)。通过在多个时间间隔内将其施加到多级火腿(MHAM)的时间间隔,可以提高使用火腿的ODES溶液的收敛区域。在本文中,开发了IEEE模型的MHAM型号2.2同步机,IEEE Type-1激励系统,一阶调速器和一阶涡轮机模型。本文研究了MHAM对电力系统动态模拟的适用性,使用了来自10个发电机39总线系统到4092发电机13 659总线系统的七种广泛使用的测试系统对4092个发电机13 659的总线系统进行了研究。研究了术语数量,(h)对棒的效果以及对解决方案的准确性和稳定性的时间步骤。 MHAM的有效性已与修饰的欧拉(ME)和中点梯形(Trapz)方法进行比较。已发现MHAM的准确性与ME和TRAPZ方法相当,在-1.05和-0.95之间的(h)上的值(h)的值。获得最佳精度(H)上方的条形= -1.0,这是MHAM的特殊情况,称为多级同性恋扰动方法(MHPM)。在本文中,还表明MHPM相当于多级ADOMIAN分解方法,最近探讨了大型电力系统模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号