首页> 外文期刊>IEEE Transactions on Power Systems >A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment
【24h】

A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment

机译:价格敏感环境中短期负荷预测的神经模糊方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach to short-term load forecasting in a deregulated and price-sensitive environment. A real-time pricing type scenario is envisioned where energy prices could change on an hourly basis with the consumer having the ability to react to the price signal through shifting his electricity usage from expensive hours to other times when possible. The load profile under this scenario would have different characteristics compared to that of the regulated, fixed-price era. Consequently, short-term load forecasting models customized on price-insensitive (PIS) historical data of regulated era would no longer be able to perform well. In this work, a price-sensitive (PS) load forecaster is developed. This forecaster consists of two stages, an artificial neural network based PIS load forecaster followed by a fuzzy logic (FL) system that transforms the PIS load forecasts of the first stage into PS forecasts. The first stage forecaster is a widely used forecaster in industry known as ANNSTLF. For the FL system of the second stage, a genetic algorithm based approach is developed to automatically optimize the number of rules and the number and parameters of the fuzzy membership functions. Another FL system is developed to simulate PS load data from the PIS historical data of a utility. This new forecaster termed NFSTLF is tested on three PS database and it is shown that it produces superior results to the PIS ANNSTLF.
机译:本文提出了一种新的解除管制和价格敏感环境中的短期负荷预测方法。设想了一个实时定价类型的情景,其中能源价格可能会在小时内每小时改变,消费者能够在可能的情况下通过将电力使用从昂贵的时间转移到其他时间来对价格信号进行反应。与受监管的固定价格时代相比,这种情况下的负载曲线具有不同的特性。因此,在监管时代的价格不区分(PIS)历史数据上定制的短期负荷预测模型将不再能够表现良好。在这项工作中,开发了价格敏感的(PS)负载预测器。该研究员包括两个阶段,一个基于人工神经网络的PIS负荷预测器,然后是模糊逻辑(FL)系统,将第一阶段的PIS负载预测转换为PS预测。第一阶段预测是在称为Annstlf的行业中广泛使用的预测。对于第二阶段的FL系统,开发了一种基于遗传算法的方法来自动优化模糊成员函数的规则数和数量和参数。另一个FL系统开发用于模拟来自实用程序的PIS历史数据的PS负载数据。这个新的预测转让转让的NFSTLF在三个PS数据库上进行了测试,并显示它为PIS Annstlf产生了卓越的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号