首页> 外文期刊>IEEE Transactions on Power Systems >Online Estimation of Power System Inertia Using Dynamic Regressor Extension and Mixing
【24h】

Online Estimation of Power System Inertia Using Dynamic Regressor Extension and Mixing

机译:基于动态回归扩展和混合的电力系统惯量在线估计

获取原文
获取原文并翻译 | 示例

摘要

The increasing penetration of power-electronic-interfaced devices is expected to have a significant effect on the overall system inertia and a crucial impact on the system dynamics. In future, the reduction of inertia will have drastic consequences on protection and real-time control and will play a crucial role in the system operation. Therefore, in a highly deregulated and uncertain environment, it is necessary for transmission system operators to be able to monitor the system inertia in real time. We address this problem by developing and validating an online inertia estimation algorithm. The estimator is derived using the recently proposed dynamic regressor and mixing procedure. The performance of the estimator is demonstrated via several test cases using the 1013-machine ENTSO-E dynamic model.
机译:功率电子接口设备的普及率不断提高,预计将对整个系统的惯性产生重大影响,并对系统动力学产生至关重要的影响。将来,惯性的减小将对保护和实时控制产生巨大影响,并将在系统运行中发挥关键作用。因此,在高度管制和不确定的环境中,传动系统操作员必须能够实时监视系统惯性。我们通过开发和验证在线惯性估计算法来解决此问题。估计量是使用最近提出的动态回归和混合过程得出的。通过使用1013台机器的ENTSO-E动态模型的多个测试案例,证明了估算器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号