首页> 外文期刊>IEEE Transactions on Power Systems >Cascaded artificial neural networks for short-term load forecasting
【24h】

Cascaded artificial neural networks for short-term load forecasting

机译:级联人工神经网络用于短期负荷预测

获取原文
获取原文并翻译 | 示例

摘要

An application of artificial neural networks (ANNs) to short-term load forecasting is presented in this paper. An algorithm using cascaded learning together with historical load and weather data is proposed to forecast half-hourly power system load for the next 24 hours. This cascaded neural network algorithm (CANNs) includes peak, minimum and daily energy prediction as additional input data for the final forecast stage. These additional input data are predicted using the first (ANNs) model. The networks are trained and tested on the electric power system of Kuwait. The absolute average forecasting error is reduced from 3.367% to 2.707% by applying CANNs as compared to the conventional ANNs. Simulation results indicate that the developed forecasting approach is effective and point to the potential of the methodology for economic applications.
机译:提出了一种人工神经网络在短期负荷预测中的应用。提出了一种使用级联学习以及历史负荷和天气数据的算法来预测未来24小时的半小时电力系统负荷。此级联神经网络算法(CANN)包括峰值,最小和每日能量预测,作为最终预测阶段的附加输入数据。这些附加的输入数据是使用第一个(ANN)模型进行预测的。这些网络在科威特的电力系统上经过培训和测试。与传统的人工神经网络相比,通过应用CANN,绝对平均预测误差从3.367%降低到2.707%。仿真结果表明,所开发的预测方法是有效的,并指出了该方法在经济应用中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号