首页> 外文期刊>IEEE Transactions on Power Systems >Solving the nonlinear power flow equations with an inexact Newtonmethod using GMRES
【24h】

Solving the nonlinear power flow equations with an inexact Newtonmethod using GMRES

机译:用GMRES用不精确的牛顿法求解非线性潮流方程。

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a detailed investigation into theneffectiveness of iterative methods in solving the linear systemnsubproblem of a Newton power flow solution process. An exact Newtonnmethod employing an LU factorization has been one of the most widelynused power flow solution algorithms, due to the efficient minimum degreenordering techniques that attempt to minimize fill-in. However, the LUnfactorization remains a computationally expensive task that can benavoided by the use of an iterative method in solving the linearnsubproblem. An inexact Newton method with a preconditioned GeneralizednMinimal Residual (GMRES) linear solver is presented as a promisingnalternative for solving the power flow equations. When combined with angood quality preconditioner, the Newton-GMRES method achieves a betternthan 50% reduction in computation, compared to Newton-LU, for twonlarge-scale power systems: one with 3493 buses and 6689 branches,nanother with 8027 buses and 13765 branches
机译:本文详细介绍了迭代方法在解决牛顿潮流求解过程的线性系统子问题中的有效性。由于尝试最小化填充的高效最小度排序技术,采用LU分解的精确牛顿法已成为使用最广泛的潮流解决方案算法之一。但是,LUnfactorization仍然是一项计算量大的任务,可以通过使用迭代方法解决线性子问题来避免。提出了一种不精确的牛顿法,该方法具有预处理的广义最小残差(GMRES)线性求解器,作为求解潮流方程的有希望的替代方法。与高质量的预调节器结合使用时,相比于Newton-LU,对于两个大型电力系统,Newton-GMRES方法的计算量减少了50%以上:一个拥有3493个总线和6689个分支,另一个拥有8027个总线和13765个分支

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号