首页> 外文期刊>IEEE Transactions on Power Delivery >Application of neural-network modules to electric power system fault section estimation
【24h】

Application of neural-network modules to electric power system fault section estimation

机译:神经网络模块在电力系统故障区间估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a neural system intended to aid the control center operator in the task of fault section estimation. Its analysis is based on information about the operation of protection devices and circuit breakers. In order to allow the diagnosis task, the protection system philosophy of busbars, transmission lines, and transformers are modeled with the use of two types of neural networks: the general regression neural network and the multilayer perceptron neural network. The tool described in this paper can be applied to real bulk power systems and is able to deal with topological changes without having to retrain the neural networks.
机译:本文提出了一种神经系统,旨在协助控制中心操作员进行故障区间估计。其分析基于有关保护装置和断路器操作的信息。为了完成诊断任务,使用两种类型的神经网络对母线,传输线和变压器的保护系统原理进行建模:通用回归神经网络和多层感知器神经网络。本文中描述的工具可以应用于实际的大容量电力系统,并且能够处理拓扑变化而无需重新训练神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号