首页> 外文期刊>IEEE Transactions on Plasma Science >Ignition of Ethylene–Air and Methane–Air Flows by Low-Temperature Repetitively Pulsed Nanosecond Discharge Plasma
【24h】

Ignition of Ethylene–Air and Methane–Air Flows by Low-Temperature Repetitively Pulsed Nanosecond Discharge Plasma

机译:低温重复脉冲纳秒放电等离子体点燃乙烯-空气和甲烷-空气流

获取原文
获取原文并翻译 | 示例

摘要

This paper presents results of low-temperature plasma-assisted combustion experiments in premixed ethylene–air and methane–air flows. The plasma was generated by high-voltage, nanosecond pulse duration, high repetition rate pulses. The high reduced electric field during the pulse allows efficient electronic excitation and molecular dissociation, thereby generating a pool of chemically active radical species. The low duty cycle of the repetitively pulsed discharge improves the discharge stability and helps sustain diffuse, uniform, and volume filling nonequilibrium plasma. Plasma temperature was inferred from nitrogen second positive band system emission spectra and calibrated using thermocouple measurements in preheated flows (without plasma). The experiments showed that adding fuel to the air flow considerably increases the flow temperature in the plasma, up to $Delta T = 250 ^{circ}hbox{C}{-}350 ^{circ}hbox{C}$. On the other hand, adding fuel to nitrogen flow at the same flow and discharge conditions resulted in a much less pronounced plasma temperature rise, only by about $Delta T = 50 ^{circ} hbox{C}$. This shows that temperature rise in the air–fuel plasma is due to plasma chemical fuel oxidation reactions initiated by the radicals generated in the plasma. In a wide range of conditions, generating the plasma in air–fuel flows resulted in flow ignition, flameholding, and steady combustion downstream of the discharge. Plasma-assisted ignition occurred at low air plasma temperatures, $100 ^{circ}hbox{C}{-}200 ^{circ}hbox{C}$, and low discharge powers, $sim$100 W ( $sim$1% of heat of reaction). At these conditions, the reacted fuel fraction is up to 85%&x2-01;3;95%. The present results suggest that the flow temperature rise caused by plasma chemical fuel oxidation results in flow ignition downstream of the plasma.
机译:本文介绍了在预混合乙烯-空气和甲烷-空气流中进行的低温等离子体辅助燃烧实验的结果。等离子体是由高电压,纳秒级脉冲持续时间,高重复率脉冲产生的。脉冲期间高减小的电场允许有效的电子激发和分子解离,从而产生化学活性自由基物质的集合。重复脉冲放电的低占空比提高了放电稳定性,并有助于维持扩散,均匀和体积填充的非平衡等离子体。从氮气第二正带系统发射光谱推断出等离子体温度,并在预热流中(无等离子体)使用热电偶测量进行校准。实验表明,向空气流中添加燃料会大大增加等离子体中的流动温度,最高可达ΔT = 250 ^ hbox {C} {-} 350 ^ hbox {C} $。另一方面,在相同的流量和排放条件下将燃料添加到氮气流中导致等离子体温度升高的幅度要小得多,仅升高了约Delta T = 50 ^ hbox {C} $。这表明空气燃料等离子体中的温度升高是由于等离子体中产生的自由基引发的等离子体化学燃料氧化反应。在广泛的条件下,在空气-燃料流中产生等离子体会导致流点火,火焰保持和排放下游的稳定燃烧。等离子辅助点火发生在空气等离子温度低时,$ 100 ^ {circ} hbox {C} {-} 200 ^ {circ} hbox {C} $,并且放电功率低,$ sim $ 100 W($ sim $ 1%的热量反应)。在这些条件下,反应的燃料分数高达85%x2-01; 3; 95%。本结果表明由等离子体化学燃料氧化引起的流动温度升高导致等离子体下游的流动点火。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号