首页> 外文学位 >Ignition of hydrocarbon fuels by a repetitively pulsed nanosecond pulse duration plasma.
【24h】

Ignition of hydrocarbon fuels by a repetitively pulsed nanosecond pulse duration plasma.

机译:重复脉冲纳秒脉冲持续时间等离子体点燃烃类燃料。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation presents experimental and kinetic modeling studies of ignition of hydrocarbon-air flows by a high voltage, repetitively pulsed, nanosecond pulse duration plasma. This type of plasma offers two critical advantages. First, a high reduced electric field during the pulse results in efficient electronic excitation and molecular dissociation. Second, extremely low duty cycle of the repetitively pulsed nanosecond discharge greatly improves the plasma stability and helps sustain a diffuse and uniform nonequilibrium plasma.; Gaseous fuel ignition experiments using a Chemical Physics Technologies (CPT) pulser (16-18 kV peak voltage, 20-30 nsec pulse duration, up to 50 kHz pulse repetition rate) generating a plasma in premixed ethylene-air and methane-air flows demonstrated flow ignition occurring at low air plasma temperatures, 200-300°C. The experiments showed that adding fuel to the air flow increased the flow temperature in the plasma, up to 500-600°C. At these conditions, the reacted fuel fraction was up to 80%, and significant amounts of combustion products were detected. The experiments also showed significant fuel oxidation, with a resultant temperature rise, at conditions when there was no ignition detected. Replacing air with nitrogen at the same flow and plasma conditions resulted in much less plasma temperature rise. This demonstrates that the temperature increase is due to plasma chemical fuel oxidation reactions, rather than due to excited species quenching. This suggests that low-temperature plasma chemical reactions can oxidize significant amounts of hydrocarbons and increase the temperature of the air-fuel mixture, prior to ignition. Ignition occurs when the flow temperature becomes close to autoignition temperature, due to an additional energy release in plasma chemical reactions. The present results also showed that plasma assisted ignition occurred at a low discharge power, ∼1% of heat of combustion.; Experiments in hydrocarbon-air plasmas generated by an alternative, Fast Ionization Dynistor (FID) pulse generator (50 kV peak voltage, 5 nsec pulse duration, up to 100 kHz pulse repetition rate) did not result in ignition. It is concluded that a lower pulser energy coupled to the flow by the FID pulser resulted in less flow heating and presumably in lower radical concentrations generated in the plasma, thereby precluding ignition.; Ignition experiments in liquid methanol- and ethanol-air mixtures by the CPT pulser showed that preheating of the air flow up to 50-60°C is critical for producing ignition. Ignition was achieved, and significant plasma temperature rise and fuel oxidation were detected in preheated methanol-air and ethanol-air flows.; A kinetic model was developed to simulate plasma assisted ignition of hydrocarbon-air mixtures by a repetitively pulsed, nanosecond pulse duration, low-temperature plasma. The model was validated by comparing with O atom concentration measurements in single-pulse discharges in air, methane-air, and ethylene-air, showing good agreement. Kinetic modeling of a repetitively pulsed discharge at the present experimental conditions did not predict significant fuel oxidation or ignition at the measured discharge power. The model predicts that ignition would occur only if the discharge power is 2.5 times higher than measured in the experiments. The difference between two hydrocarbon oxidation mechanisms predictions suggests that neither of them might be applicable at the low-temperature conditions (starting at room temperature) of the present experiments. This demonstrates the need for development and validation of a low-temperature hydrocarbon oxidation in non-equilibrium plasmas.
机译:本文提出了通过高压,重复脉冲,纳秒脉冲持续时间等离子体点燃烃-空气流的实验和动力学模型研究。这种类型的等离子体具有两个关键优势。首先,在脉冲过程中高减小的电场导致有效的电子激发和分子解离。其次,重复脉冲纳秒放电的极低占空比大大提高了等离子体的稳定性,并有助于维持扩散和均匀的非平衡等离子体。使用化学物理技术(CPT)脉冲发生器(16-18 kV峰值电压,20-30 ns脉冲持续时间,最高50 kHz脉冲重复频率)进行气体燃料点火实验,证明在预混合的乙烯-空气和甲烷-空气流中产生等离子体在200-300°C的低等离子空气温度下发生气流点火。实验表明,向气流中添加燃料会增加等离子体中的流动温度,最高可达500-600°C。在这些条件下,反应的燃料分数高达80%,并且检测到大量燃烧产物。实验还表明,在未检测到点火的情况下,燃料会发生明显的氧化,从而导致温度升高。在相同流量和等离子条件下用氮气替代空气,导致等离子温度升高的幅度小得多。这表明温度升高是由于等离子体化学燃料的氧化反应,而不是由于激发物种的猝灭。这表明,在点火之前,低温等离子体化学反应会氧化大量碳氢化合物并提高空气燃料混合物的温度。当流动温度变得接近自燃温度时,由于在等离子体化学反应中释放了额外的能量,因此发生了点火。目前的结果还表明,等离子辅助点火是在低排放功率下发生的,燃烧功率约为燃烧热的1%。由替代的快速电离Dynistor(FID)脉冲发生器(50 kV峰值电压,5 ns脉冲持续时间,最高100 kHz脉冲重复频率)产生的碳氢化合物空气等离子体的实验未引起点火。结论是,通过FID脉冲发生器与流动耦合的较低的脉冲发生器能量导致较少的流动加热,并且可能导致等离子体中产生的自由基浓度较低,从而排除了点火。 CPT脉冲发生器在液态甲醇和乙醇-空气混合物中进行的点火实验表明,将空气流预热至50-60°C对于产生点火至关重要。点火,在预热的甲醇-空气和乙醇-空气流中检测到明显的等离子体温度升高和燃料氧化。建立了动力学模型,以重复脉冲,纳秒级脉冲持续时间的低温等离子体模拟碳氢化合物与空气混合物的等离子体辅助点火。通过与空气,甲烷-空气和乙烯-空气的单脉冲放电中的O原子浓度测量值进行比较,验证了该模型,显示出良好的一致性。在当前实验条件下的重复脉冲放电的动力学模型不能预测在所测得的放电功率下燃料明显氧化或着火。该模型预测只有在放电功率比实验中测量的功率高2.5倍的情况下才会发生着火。两种碳氢化合物氧化机理预测之间的差异表明,它们均不适用于本实验的低温条件(从室温开始)。这表明需要开发和验证非平衡等离子体中的低温烃氧化。

著录项

  • 作者

    Bao, Ainan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号