首页> 外文期刊>Plasma Science, IEEE Transactions on >Impact of External Magnetic Field on Plasma Current Layer Deformation During Contact Opening in Medium-Voltage Puffer $hbox{SF}_{6}$ Circuit Breaker
【24h】

Impact of External Magnetic Field on Plasma Current Layer Deformation During Contact Opening in Medium-Voltage Puffer $hbox{SF}_{6}$ Circuit Breaker

机译:中压吹风机$ hbox {SF} _ {6} $断路器触头断开过程中外部磁场对等离子体电流层变形的影响

获取原文
获取原文并翻译 | 示例

摘要

A 3-D transient model has been developed to investigate plasma current deformation driven by internal and external magnetic fields and their influences on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained by solving the current continuity equation along with the generalized Ohm's law in the presence of an external magnetic field, while a magnetic field induced by a current flowing through an arc column is calculated by a magnetic-vector-potential equation. The applied external field imposes a rotational electromagnetic force to the arc and influences plasma current deformation which is discussed in this paper. In $hbox{SF}_{6}$ circuit breakers, when gas interacts with the arc column, fundamental equations such as Ampere's law, Ohm's law, turbulence model, transport equations of mass, momentum, and energy of plasma flow have to be coupled for analyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the framework of magnetohydrodynamic equations in conjunction with a $K - varepsilon$ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related to Bennett relation and electromagnetic fields and define plasma deformations). The 3-D simulation reveals relations between plasma current deformation and instability phenomena, which affect arc stability during operation. Plasma current deformation is the consequence of coupling between electromagnetic forces (resulting from internal and external magnetic fields) and plasma flow that are described in simulations.
机译:已经开发出3-D瞬态模型来研究由内部和外部磁场驱动的等离子体电流变形及其对断路器电弧稳定性的影响。在存在外部磁场的情况下,通过求解电流连续性方程以及广义欧姆定律,可获得电流密度的3-D分布,而由流经电弧柱的电流感应的磁场由磁场计算-矢量势方程。所施加的外部磁场会向电弧施加旋转电磁力,并影响等离子体电流的变形,本文对此进行了讨论。在$ hbox {SF} _ {6} $断路器中,当气体与弧形柱相互作用时,必须使用基本方程,例如安培定律,欧姆定律,湍流模型,质量,动量和等离子流能量的传输方程耦合用于分析现象。电弧与等离子体流之间的耦合相互作用是在磁流体动力学方程的框架内结合$ K-varepsilon $湍流模型进行描述的。模拟已集中于血浆中香肠和扭结的不稳定性(这些现象与Bennett关系和电磁场有关,并定义了血浆变形)。 3-D仿真揭示了等离子体电流变形与不稳定性现象之间的关系,这些不稳定性现象会影响操作过程中的电弧稳定性。等离子体电流变形是电磁力(源于内部和外部磁场)与等离子体流动之间耦合的结果,在模拟中进行了描述。

著录项

  • 来源
    《Plasma Science, IEEE Transactions on》 |2012年第6期|p.1759-1767|共9页
  • 作者

    Abbasi V.;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号