...
首页> 外文期刊>Physical Review. B, Condensed Matter >Influence of the thermal interface resistance on the thermovoltage of a magnetic tunnel junction
【24h】

Influence of the thermal interface resistance on the thermovoltage of a magnetic tunnel junction

机译:热界面电阻对磁隧道结热电阻的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the field of spin caloritronics recent theoretical models suggested a significant influence of the interfaces ofthe magnetic tunnel junction (MTJ) on the thermal transport. In this work magnetothermopower measurementsare carried out on CoFeB/MgO/CoFeB nanopillars and an unexpected increase of the thermovoltage with thediameter of the nanopillars is observed. To understand this behavior the thermal profiles are computed by finiteelement simulations. The observed behavior with the pillar diameter could only be reproduced in simulationsby considering a far lower effective thermal conductivity of the MgO than the intrinsic thin-film value. Inagreement with theoretical predictions, a finite thermal conductivity of the MgO/CoFeB interface can explainthis observation. This is experimental evidence of the influence of the thermal resistance of the MgO/CoFeBinterfaces on magnetothermovoltage measurements and is in agreement with recent theoretical predictions. Themeasured magnetothermovoltage is around 4.5 μV and the simulated temperature difference is about 2 K acrossthe tunnel barrier, which resulted in a magnetic contribution of the thermopower of ΔS_(MTJ) ≈ −2.25 μV K~(−1).This value was about 20 times smaller than the result obtained by the typically used thermal conductivity of MgOthin films.
机译:在旋转升降机领域,最近理论模型表明界面的重大影响磁隧道结(MTJ)在热传输上。在这项工作磁热升压中在CoFeB / MgO / CoFeB纳米粒子上进行,与热电站的意外增加观察到纳米玻璃的直径。要理解这种行为,热谱由有限的计算元素模拟。柱直径的观察到的行为只能在模拟中转载通过考虑MgO的较低有效的导热系数而不是内在薄膜值。在与理论预测的协议,MgO / CofeB界面的有限热导率可以解释这个观察。这是MgO / CoFeb的热阻影响的实验证据磁热热电压测量的界面,并与最近的理论预测一致。这测量的磁热电电压约为4.5μV,模拟温度差约为2 k隧道屏障,导致ΔS_(MTJ)的热电驱动器的磁力贡献≈〜2.25μVK〜(-1)。该值比通过通常使用的MgO的导热率获得的结果小约20倍薄膜。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2017年第10期|104441.1-104441.5|共5页
  • 作者单位

    International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s Braga 4715-330 Portugal;

    Centro Brasileiro de Pesquisas Fisicas (CBPF) Rua Dr. Xavier Sigaud 150 Rio de Janeiro 22290-180 Brazil;

    Centro Brasileiro de Pesquisas Fisicas (CBPF) Rua Dr. Xavier Sigaud 150 Rio de Janeiro 22290-180 Brazil;

    International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s Braga 4715-330 Portugal;

    International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s Braga 4715-330 Portugal;

    International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s Braga 4715-330 Portugal;

    International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s Braga 4715-330 Portugal;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号