首页> 外文学位 >Advanced electron microscopy of novel ferromagnetic materials and ferromagnet/oxide interfaces in magnetic tunnel junctions.
【24h】

Advanced electron microscopy of novel ferromagnetic materials and ferromagnet/oxide interfaces in magnetic tunnel junctions.

机译:磁性隧道结中新型铁磁材料和铁磁体/氧化物界面的高级电子显微镜。

获取原文
获取原文并翻译 | 示例

摘要

We have studied novel ferromagnetic (FM) materials and FM electrode/tunnel barrier interfaces in magnetic tunnel junctions (MTJs) by advanced electron microscopy including scanning transmission electron microscopy (HRSTEM) and electron energy loss spectroscopy (EELS). MTJs are one of the prototypical spintronic devices, with applications in magnetic random access memory, sensors and read heads. The performance of MTJs depends on several factors, including the FM electrodes and the FM/tunnel barrier interfaces. Therefore, to realize the high performance of MTJs, we first need high quality ferromagnetic electrodes with high spin polarization. High-quality Fe3O4 and Fe4N electrodes with theoretically predicted -100% spin polarization were fabricated by various methods and investigated by HRSTEM and STEM EELS. The Fe3O4 and Fe4N thin films have low defect density and good crystallinity, but when integrated as electrodes in a MTJ, problems emerged. In a Fe4N/AlOx/Fe MTJ, the magnetoresistance was negative, but relatively small, due to a defective Fe 3O4 reaction layer formed at the Fe4N/tunnel barrier interface revealed by HRSTEM and EELS. The interfacial reaction layer was thin and discontinuous which made direct imaging difficult. Therefore, STEM EELS was used to map out the reaction layer. A Fe3O4 reaction layer was also found in a nominally symmetric CoFe/AlOx/CoFe MTJs after annealing, which also exhibited inverse TMR and a non-symmetric bias dependence. We also investigated the MTJs with the Heusler alloy Co2MnSi as one or both electrode and crystalline MgO as the tunnel barrier, which exhibit quite high TMR due to coherent tunneling. We showed that the Co2MnSi/MgO interface in these junctions is dominated by a configuration of a pure Mn plane bonded across the interface to O. This was the first observation of that interface termination. HRSTEM images also show that the fraction of MnMn/O interface termination increases with increasing Mn concentration in the CMS electrode. With the help of electron microscopy, we have found methods to increase the TMR of MTJs with half metallic materials as electrodes including Fe3O4 and Co2MnSi. We believe that the potential of half metallic materials will be realized with the development of new materials and new design of FM/tunnel barrier interfaces.
机译:我们已经通过先进的电子显微镜,包括扫描透射电子显微镜(HRSTEM)和电子能量损失谱(EELS),研究了新型的铁磁(FM)材料和磁性隧道结(MTJs)中的FM电极/隧道势垒界面。 MTJ是典型的自旋电子设备之一,应用于磁性随机存取存储器,传感器和读取头。 MTJ的性能取决于几个因素,包括FM电极和FM /隧道势垒界面。因此,为了实现MTJ的高性能,我们首先需要具有高自旋极化的高质量铁磁电极。用各种方法制造了理论上预测的-100%自旋极化的高质量Fe3O4和Fe4N电极,并通过HRSTEM和STEM EELS进行了研究。 Fe 3 O 4和Fe 4 N薄膜具有低缺陷密度和良好的结晶度,但是当集成为MTJ中的电极时,出现了问题。在Fe4N / AlOx / Fe MTJ中,由于HRSTEM和EELS揭示了在Fe4N /隧道势垒界面处形成的有缺陷的Fe 3O4反应层,因此磁阻为负,但相对较小。界面反应层薄且不连续,这使得直接成像困难。因此,STEM EELS用于绘制反应层。退火后,在名义对称的CoFe / AlOx / CoFe MTJ中也发现了Fe3O4反应层,该反应层还表现出反TMR和非对称偏置依赖性。我们还研究了以Heusler合金Co2MnSi作为一个或两个电极以及结晶MgO作为隧道势垒的MTJ,由于相干隧道效应,它们表现出相当高的TMR。我们表明,在这些结中的Co2MnSi / MgO界面主要由纯Mn平面的构型所控制,该平面穿过与O的界面键合。这是对该界面终止的首次观察。 HRSTEM图像还显示,MnMn / O界面终止的比例随CMS电极中Mn浓度的增加而增加。借助电子显微镜,我们发现了使用半金属材料作为电极(包括Fe3O4和Co2MnSi)来提高MTJ的TMR的方法。我们相信,随着新材料的开发和FM /隧道屏障接口的新设计,将实现半金属材料的潜力。

著录项

  • 作者

    Shi, Fengyuan.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号