首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Band offset formation at semiconductor heterojunctions through density-based minimization of interface energy
【24h】

Band offset formation at semiconductor heterojunctions through density-based minimization of interface energy

机译:通过基于密度的界面能量最小化,在半导体异质结处形成能带偏移

获取原文
获取原文并翻译 | 示例
           

摘要

It is well known that the magnitude of band offset (BO) at any semiconductor heterojunction is directly derivable from the distribution of charge at that interface and that the latter is decided by a minimization of total energy. However, the fact that BO formation is governed by energy minimization has not been explicitly used in theoretical BO models, likely because the equilibrium charge densities at heterojunction interfaces appear difficult to predict, except via explicit calculation. In this paper, electron densities at a large number of (100), (110), and (111) oriented heterojunctions between lattice-matched, isovalent semiconductors with the zinc blende (ZB) structure have been calculated by first-principles methods and analyzed in detail for possible common characteristics among energy-minimized densities. Remarkably, the heterojunction electron density was found to largely depend only on the immediate, local atomic arrangement. In fact, it is so much so that a juxtaposition of local electron-densities generated in oligo-cells (LEGOs) accurately reproduced the charge densities that minimize the energy for the heterojunctions. Furthermore, the charge distribution for each bulk semiconductor was found to display a striking separability of its electrostatic effect into two neutral parts, associated with the cation and the anion, which are approximately transferrable among semiconductors. These discoveries form the basis of a neutral polyhedra theory (NPT) that approximately predicts the equilibrium charge density and BO of relaxed heterojunctions from the energy minimization requirement. Well-known experimentally observed characteristics of heterojunctions, such as the insensitivity of BO to heterojunction orientation and the identity of interface bonds, the transitivity rule, etc., are all in good agreement with the NPT. Therefore, energy minimization, which essentially decides the electronic properties of all other solid and molecular systems, also governs the formation of the charge density at these heterojunction interfaces. In particular, the approach presented here eliminates the need to invoke mechanisms that are specific to semiconductor interfaces.
机译:众所周知,在任何半导体异质结处的带隙(BO)的大小都可以直接从该界面处的电荷分布推导而来,后者由总能量的最小化来决定。然而,BO形成受能量最小化支配的事实尚未在理论BO模型中明确使用,这可能是由于异质结界面处的平衡电荷密度似乎难以预测,除非通过显式计算。本文通过第一性原理方法计算并分析了具有锌共混物(ZB)结构的晶格匹配,等价半导体之间的大量(100),(110)和(111)取向异质结的电子密度。详细介绍了能量密度最小的可能的共同特性。值得注意的是,发现异质结电子密度在很大程度上仅取决于直接的局部原子排列。实际上,它是如此之多,以至于在寡细胞(LEGO)中产生的局部电子密度的并置可以精确地复制电荷密度,从而使异质结的能量最小化。此外,发现每个块状半导体的电荷分布显示出其静电效应的显着可分离性,与阳离子和阴离子相关的两个中性部分可在半导体之间近似转移。这些发现构成了中性多面体理论(NPT)的基础,该中性多面体理论根据能量最小化要求近似预测了平衡异质结的平衡电荷密度和BO。实验中观察到的众所周知的异质结特征,例如BO对异质结取向的不敏感性和界面键的身份,传递性规则等,都与NPT很好地吻合。因此,从本质上决定所有其他固体和分子系统电子性能的能量最小化也控制着这些异质结界面处电荷密度的形成。特别地,这里提出的方法消除了调用特定于半导体接口的机制的需要。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2016年第7期|075310.1-075310.24|共24页
  • 作者

    Raymond T. Tung; Leeor Kronik;

  • 作者单位

    Department of Physics, Brooklyn College, CUNY, Brooklyn, New York 11210, USA and Physics Program, Center, CUNY, New York, New York 10016, USA;

    Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号