首页> 外文期刊>Physica status solidi >Limitations for Reliable Operation at Elevated Temperatures of Al_2O_3/AlGaN/GaN Metal–Insulator– Semiconductor High-Electron-Mobility Transistors Grown by Metal-Organic Chemical Vapor Deposition on Silicon Substrate
【24h】

Limitations for Reliable Operation at Elevated Temperatures of Al_2O_3/AlGaN/GaN Metal–Insulator– Semiconductor High-Electron-Mobility Transistors Grown by Metal-Organic Chemical Vapor Deposition on Silicon Substrate

机译:在硅基板上通过金属有机化学气相沉积法生长的Al_2O_3 / AlGaN / GaN金属-绝缘体-半导体高电子迁移率晶体管在高温下可靠运行的限制

获取原文
获取原文并翻译 | 示例
           

摘要

Herein, the gate degradation mechanisms of gallium nitride (GaN)-based metal– insulator–semiconductor high-electron-mobility transistors (MISHEMTs) utilizing Al_2O_3 grown by plasma-enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time-dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al_2O_3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al_2O_3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data.
机译:在此,系统地研究了氮化镓(GaN)基金属-绝缘体-半导体高电子迁移率晶体管(MISHEMT)的栅极退化机理,该晶体管利用通过等离子体增强原子层沉积(PEALD)生长的Al_2O_3。通过在偏压和温度变化的情况下应用恒定电压应力和随时间变化的介电击穿(TDDB)方法,发现击穿时间的激活能量为1.25 eV,并推断出寿命的1 / E模型。外推4.9 K在298 K时的最大栅极工作电压,由于加速缺陷的产生,在598 K的工作温度下其最大投影电压降至3.5V。 Al_2O_3的TDDB的物理起源与应力偏压下氧化物中随机产生的缺陷形成的渗流路径有关。蒙特卡洛模拟证实了该机制,该机制还需要在Al_2O_3中存在初始缺陷密度,这与实验数据相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号