首页> 外文期刊>Performance evaluation review >A Distributed Evolutionary Method To Design Scheduling Policies For Volunteer Computing
【24h】

A Distributed Evolutionary Method To Design Scheduling Policies For Volunteer Computing

机译:志愿者计算调度策略的分布式进化方法

获取原文
获取原文并翻译 | 示例

摘要

Volunteer Computing (VC) is a paradigm that takes advantage of idle cycles from computing resources donated by volunteers and connected through the Internet to compute large-scale, loosely coupled simulations. A big challenge in VC projects is the scheduling of work-units across heterogeneous, volatile, and error-prone computers. The design of efficient scheduling policies for VC projects involves subjective and time-demanding tuning that is driven by knowledge of the project designer. VC projects are in need of a faster and project-independent method to automate the scheduling design. To automatically generate a scheduling policy, we must explore the extremely large space of syntactically valid policies. Given the size of this search space, exhaustive search is not feasible. Thus in this paper we propose to solve the problem using an evolutionary method to automatically generate a set of scheduling policies that are project-independent, minimize errors, and maximize throughput in VC projects. Our method includes a genetic algorithm where the representation of individuals, the fitness function, and the genetic operators are specifically tailored to get effective policies in a short time. The effectiveness of our method is evaluated with SimBA, a Simulator of BOINC Applications. In contrast with manually designed scheduling policies that often perform well only for the specific project they were designed for and require months of tuning, our resulting scheduling policies provide better overall throughput across the different VC projects considered in this work and were generated by our method in a time window of one week.
机译:志愿者计算(VC)是一种范例,它利用志愿者捐赠的并通过Internet连接的计算资源的空闲周期来计算大规模的松耦合模拟。 VC项目中的一大挑战是跨异构,易失性和易出错计算机之间的工作单元调度。用于VC项目的有效调度策略的设计涉及主观且需要时间的调整,该调整由项目设计者的知识驱动。 VC项目需要一种更快且与项目无关的方法来自动化调度设计。要自动生成调度策略,我们必须探索语法有效策略的极大空间。给定此搜索空间的大小,穷举搜索是不可行的。因此,在本文中,我们提出使用进化方法来解决该问题,以自动生成一组与项目无关的调度策略,从而最大程度地减少错误,并使VC项目中的吞吐量最大化。我们的方法包括一个遗传算法,该算法专门针对个体的代表,适应度函数和遗传算子进行了定制,以在短时间内获得有效的策略。我们的方法的有效性通过BOINC Applications的仿真器SimBA进行了评估。与通常仅针对其设计的特定项目表现良好且需要数月调整的手动设计的调度策略相比,我们得出的调度策略在本工作中考虑的不同VC项目中提供了更好的整体吞吐量,这些策略是通过我们的方法生成的。一个星期的时间窗口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号