首页> 外文期刊>Future generation computer systems >Improving volunteer computing scheduling for evolutionary algorithms
【24h】

Improving volunteer computing scheduling for evolutionary algorithms

机译:改进用于进化算法的志愿者计算调度

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary Algorithms (EA) have been extensively used in research to resolve optimization problems involving computationally intensive objective function evaluations. It is even more interesting to use a low-cost distributed computing platform based on Volunteer Computing (VC), to perform such optimizations. The downside is that VC compute nodes' volatility and unreliability associated with the level of task dependency introduced by parallel EA's tend to delay the algorithm's progress. This work proposes an enhanced scheduling of the B01NC (Berkeley Open Infrastructure for Network Computing) tasks associated with a Genetic Algorithm (GA) that aims at improving the performance of the algorithm. BOINC is the most popular middleware used for VC. While the GA has been chosen as it is the most commonly used EA, this approach is applicable to most of iterative EA's. The scheduling performs a matchmaking between a pool of tasks, classified according to their potential (predicted) fitness, and the pool of available hosts, classified according to their reliability. The scheduling technique have been implemented in a simulation environment and tested with benchmark functions. It proved to be effective in increasing the convergence speed and reducing the execution time of the GA.
机译:进化算法(EA)已广泛用于研究中,以解决涉及计算密集型目标函数评估的优化问题。使用基于Volunteer Computing(VC)的低成本分布式计算平台执行此类优化甚至更加有趣。缺点是,VC计算节点的波动性和与并行EA引入的任务依赖程度相关的不可靠性往往会延迟算法的进度。这项工作提出了与遗传算法(GA)相关的B01NC(伯克利开放式网络计算基础设施)任务的增强调度,目的是改善算法的性能。 BOINC是用于VC的最受欢迎的中间件。选择GA是因为它是最常用的EA,但这种方法适用于大多数迭代EA。调度在根据任务的潜在(预测)适应性分类的任务池与根据其可靠性分类的可用主机池之间进行匹配。该调度技术已在模拟环境中实现,并已通过基准测试功能进行了测试。它被证明可以有效地提高GA的收敛速度并减少GA的执行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号