首页> 外文期刊>Pattern Recognition Letters >Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction
【24h】

Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction

机译:模式的层次模糊聚类及其在时间序列预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In a recent paper we presented a new algorithm for hierarchical unsupervised fuzzy clustering (HUFC) and demonstrated its performance for biomedical state identification. In the present paper, a new hybrid algorithm for time series prediction is applying the HUFC algorithm for grouping and modeling related temporal-patterns that are dispersed along a non-stationary signal. Vague and gradual changes in regime are naturally treated by means of fuzzy clustering. An adaptive hierarchical selection of the number of clusters (the number of underlying processes) can overcome the general non-stationary nature of real-life time-series (biomedical, physical, economical, etc.).
机译:在最近的论文中,我们提出了一种用于分层无监督模糊聚类(HUFC)的新算法,并展示了其在生物医学状态识别中的性能。在本文中,一种新的时间序列混合算法正在应用HUFC算法对沿非平稳信号散布的相关时间模式进行分组和建模。通过模糊聚类可以自然地处理政权的模糊和渐进式变化。群集数量(基础过程的数量)的自适应分层选择可以克服现实时间序列(生物医学,物理,经济等)的一般非平稳性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号