首页> 外文期刊>Pattern recognition letters >Socially-driven multi-interaction attentive group representation learning for group recommendation
【24h】

Socially-driven multi-interaction attentive group representation learning for group recommendation

机译:社会驱动的多互动细节群体代表学习群体建议

获取原文
获取原文并翻译 | 示例

摘要

Group recommendation has attracted much attention since group activities information has become increasing available in many online applications. A fundamental challenge in group recommendation is how to aggregate individuals & rsquo; preferences to infer the decision of a group. However, most existing group representation methods do not take into account the static and dynamic preferences of groups synchronously, leading to the suboptimal group recommendation performance. In this work, we propose a socially-driven multi-interaction group representation approach to learn static and dynamic group preference coherently. Specifically, we inject the social homophily and social influence into capturing static and dynamic preference of a group. Furthermore, we explore latent user-item and group-item multiple interactions with bipartite graphs for group representation. Extensive experimental results on two real-world datasets verify the effectiveness of our proposed approach.(c) 2021 Elsevier B.V. All rights reserved.
机译:集团建议引起了很多关注,因为在许多在线申请中,集团活动已经增加了。集团建议中的一个基本挑战是如何汇总个人和rsquo;偏好推断群体的决定。但是,大多数现有组表示方法不考虑组同步的静态和动态偏好,导致次优组推荐性能。在这项工作中,我们提出了一种社会驱动的多交互组表示方法,可以连贯地学习静态和动态组偏好。具体而言,我们将社会性交和社会影响注入捕获群体的静态和动态偏好。此外,我们探索潜在的用户项和组项目与组表示的二分钟图进行多个交互。两个现实世界数据集的广泛实验结果验证了我们所提出的方法的有效性。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号