首页> 外文期刊>Pattern recognition letters >Landmark guidance independent spatio-channel attention and complementary context information based facial expression recognition
【24h】

Landmark guidance independent spatio-channel attention and complementary context information based facial expression recognition

机译:地标指导独立的时空通道注意力和基于互补的上下文信息的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Attention based convolutional neural networks(CNNs) for facial expression recognition (FER) apply atten-tion that is uniform across either spatial dimensions or channel dimensions or both spatial and channel dimensions. However, there are many issues viz. (i) in the presence of occlusions and pose variations, different channels respond differently, (ii) the response intensity of a channel differ across spatial lo-cations, (iii) attention is defined based on external sources like landmark detectors and (iv) features used from pretrained face recognition (FR) model to complement the attention branch contain redun-dant information. To overcome these issues, an end-to-end architecture for FER is proposed in this work. This architecture obtains both local and global attention per channel per spatial location through a novel spatio-channel attention net (SCAN), without seeking any information from the landmark detectors. SCAN is complemented by a complementary context information (CCI) branch that builds expression represen-tation from the pretrained FR features. Redundancies in FR features are eliminated by using efficient channel attention (ECA). The representation learnt by the proposed architecture is robust to occlusions and pose variations. This is demonstrated by the state-of-the-art performance of the proposed model on in-the-wild datasets including AffectNet, FERPlus, RAF-DB, SFEW and FED-RO. Further, the proposed ar-chitecture also reports superior performance on in-lab datasets (CK+, Oulu-CASIA and JAFFE) and a couple of constructed face masked datasets resembling masked faces in COVID-19 scenario. Codes are publicly available at https://github.com/1980x/SCAN-CCI- FER .(c) 2021 Elsevier B.V. All rights reserved.
机译:基于注意力神经网络(CNNS)用于面部表情识别(FER)应用横跨空间尺寸或通道尺寸或空间和通道尺寸均匀的衰减。但是,有许多问题viz。 (i)在存在闭塞和姿势变化的情况下,不同的通道响应不同,(ii)信道的响应强度跨空间LO-阳离子不同,(iii)基于地标检测器和(iv)等外部来源定义了注意力从预磨削的人脸识别(FR)模型中使用的功能来补充注意力分支包含Redun-Dant信息。为了克服这些问题,在这项工作中提出了对FER的端到端架构。该架构通过新颖的时空关注网(扫描),每个空间位置每频道获得本地和全局关注,而不寻求具有里程碑标识符的任何信息。扫描由互补的上下文信息(CCI)分支互补,该分支构建从预折叠FR功能的表达式代表attation。通过使用有效的通道注意力(ECA)消除FR功能的冗余。所提出的体系结构学到的表示是强大的遮挡和构成变体。这是通过在遍历内部数据集中所提出的模型的最先进的性能来证明,包括CheftNet,FerPlus,RAF-DB,SFew和Fed-Ro。此外,拟议的AR-Chitecture还报告了实验室数据集(CK +,Oulu-Casia和Jaffe)的卓越性能,以及一些构造的面部蒙面数据集,类似于Covid-19场景中的遮蔽面。代码在https://github.com/1980x/scan-cci-fer上公开使用。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号