首页> 外文期刊>The Visual Computer >4D facial expression recognition using multimodal time series analysis of geometric landmark-based deformations
【24h】

4D facial expression recognition using multimodal time series analysis of geometric landmark-based deformations

机译:使用基于几何界标的变形的多峰时间序列分析进行4D面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

One of the main challenges in dynamic facial expression recognition is how to capture temporal information in the system. In this study, a novel approach based on time series analysis is adapted for this problem. The proposed dynamic facial expression recognition system comprises four phases: head pose correction and normalization, feature extraction, feature selection and classification. Head pose detection and correction is the first phase to realign locations of the facial landmarks. A comprehensive set of geometric deformations including point, distance and angle deformations are extracted from the key points. The concept of facial action unit analysis is interlocked with this phase to identify related key points from the landmarks. A set of multimodal time series are then constructed from the extracted deformations by applying a sliding window to characterize the dynamics of mean deformations in a window. In the third phase, a feature selection method based on neighborhood component analysis is applied on the peak value of deformation features to select useful features and discard irrelevant ones. Finally, adaptive cost dynamic time warping is utilized to recognize six prototypic expressions from multimodal time series of selected features. Experimental results on BU-4DFE data set confirm that proposed algorithm is efficient in dynamic facial expression recognition compared with state of the art.
机译:动态面部表情识别的主要挑战之一是如何在系统中捕获时间信息。在这项研究中,一种基于时间序列分析的新颖方法适用于此问题。所提出的动态面部表情识别系统包括四个阶段:头部姿势校正和归一化,特征提取,特征选择和分类。头部姿势检测和校正是重新对准面部标志的位置的第一阶段。从关键点中提取了一组全面的几何变形,包括点变形,距离变形和角度变形。面部动作单元分析的概念与此阶段相关联,以从地标中识别相关的关键点。然后,通过应用滑动窗口以表征窗口中平均变形的动力学,从提取的变形中构造出一组多峰时间序列。在第三阶段,对变形特征的峰值应用基于邻域成分分析的特征选择方法,以选择有用的特征并丢弃不相关的特征。最后,自适应成本动态时间规整被用于从所选特征的多峰时间序列中识别六个原型表达。在BU-4DFE数据集上的实验结果证实,与现有技术相比,该算法在动态面部表情识别方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号