首页> 外文期刊>IEEE Transactions on Image Processing >Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines
【24h】

Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines

机译:利用几何变形特征和支持向量机的图像序列人脸表情识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two novel methods for facial expression recognition in facial image sequences are presented. The user has to manually place some of Candide grid nodes to face landmarks depicted at the first frame of the image sequence under examination. The grid-tracking and deformation system used, based on deformable models, tracks the grid in consecutive video frames over time, as the facial expression evolves, until the frame that corresponds to the greatest facial expression intensity. The geometrical displacement of certain selected Candide nodes, defined as the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as an input to a novel multiclass Support Vector Machine (SVM) system of classifiers that are used to recognize either the six basic facial expressions or a set of chosen Facial Action Units (FAUs). The results on the Cohn-Kanade database show a recognition accuracy of 99.7% for facial expression recognition using the proposed multiclass SVMs and 95.1% for facial expression recognition based on FAU detection
机译:本文提出了两种在面部图像序列中进行面部表情识别的新方法。用户必须手动放置一些Candide网格节点以面对在检查中的图像序列的第一帧处描绘的界标。随着面部表情的发展,所使用的网格跟踪和变形系统基于可变形模型,会随着时间的推移在连续的视频帧中跟踪网格,直到与最大面部表情强度相对应的帧为止。某些选定的Candide节点的几何位移(定义为第一个面部表情强度框架与最大面部表情强度框架之间的节点坐标之差)被用作新型多分类支持向量机(SVM)分类器系统的输入,该系统用于识别六个基本的面部表情或一组选定的面部动作单元(FAU)。 Cohn-Kanade数据库上的结果表明,使用拟议的多类支持向量机进行面部表情识别的识别精度为99.7%,基于FAU检测的面部表情识别的识别精度为95.1%

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号