首页> 外文期刊>Pattern recognition letters >Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices
【24h】

Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices

机译:IOT智能空气质量监测设备网络校准自适应机器学习策略

获取原文
获取原文并翻译 | 示例

摘要

Air Quality Multi-sensors Systems (AQMS) are IoT devices based on low cost chemical microsensors array that recently have showed capable to provide relatively accurate air pollutant quantitative estimations. Their availability permits to deploy pervasive Air Quality Monitoring (AQM) networks that will solve the geographical sparseness issue that affect the current network of AQ Regulatory Monitoring Systems (AQRMS). Unfortunately their accuracy have shown limited in long term field deployments due to negative influence of several technological issues including sensors poisoning or ageing, non target gas interference, lack of fabrication repeatability, etc. Seasonal changes in probability distribution of priors, observables and hidden context variables (i.e. non observable interferents) challenge field data driven calibration models which short to mid term performances recently rose to the attention of Urban authorities and monitoring agencies. In this work, we address this non stationary framework with adaptive learning strategies in order to prolong the validity of multisensors calibration models enabling continuous learning. Relevant parameters influence in different network and node-to-node recalibration scenario is analyzed. Results are hence useful for pervasive deployment aimed to permanent high resolution AQ mapping in urban scenarios as well as for the use of AQMS as AQRMS backup systems providing data when AQRMS data are unavailable due to faults or scheduled mainteinance.
机译:空气质量多传感器系统(AQMS)是基于低成本化学微传感器阵列的IOT设备,最近显示出能够提供相对准确的空气污染物定量估计。它们的可用性允许部署普遍存在空气质量监测(AQM)网络,该网络将解决影响当前AQ监管监测系统(AQRMS)的地理稀疏问题的地理稀疏问题。遗憾的是,由于包括传感器中毒或老化,非目标气体干扰,非目标气体干扰,缺乏制作可重复性等的技术问题的负面影响,他们的准确性已经显示出有限的长期现场部署。概率分布的季节性变化,可观察到和隐藏的上下文变量的季节性变化(即非可观察干预率)挑战现场数据驱动校准模型,即最近进行中期表演的校准模型最近升至城市当局和监测机构的注意。在这项工作中,我们通过自适应学习策略来解决这种非静止框架,以延长多传感器校准模型的有效性,从而实现持续学习。分析了不同网络和节点到节点重新校准方案的相关参数影响。因此,普遍部署的目标是用于城市情景中的永久性高分辨率AQ映射的普遍部署,以及使用AQM作为AQRMS备份系统,提供数据,当AQRMS数据由于故障或预定的ManuteIn而无法使用时提供数据。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第8期|264-271|共8页
  • 作者单位

    ENEA - DTE-FSN-SAFS P.le E. Fermi 1 80055 Portici NA Italy;

    ENEA - DTE-FSN-SAFS P.le E. Fermi 1 80055 Portici NA Italy;

    ENEA - DTE-FSN-SAFS P.le E. Fermi 1 80055 Portici NA Italy;

    ENEA - DTE-FSN-SAFS P.le E. Fermi 1 80055 Portici NA Italy;

    ENEA - DTE-FSN-SAFS P.le E. Fermi 1 80055 Portici NA Italy;

    ENEA - DTE-FSN-SAFS P.le E. Fermi 1 80055 Portici NA Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号