...
首页> 外文期刊>Atmospheric Measurement Techniques >A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
【24h】

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

机译:一种机器学习校准模型使用随机林提高传感器性能,以实现低成本的空气质量监测

获取原文
获取原文并翻译 | 示例

摘要

Low-cost sensing strategies hold the promise of denser air quality monitoring networks, which could significantly improve our understanding of personal air pollution exposure. Additionally, low-cost air quality sensors could be deployed to areas where limited monitoring exists. However, low-cost sensors are frequently sensitive to environmental conditions and pollutant cross-sensitivities, which have historically been poorly addressed by laboratory calibrations, limiting their utility for monitoring. In this study, we investigated different calibration models for the Real-time Affordable Multi-Pollutant (RAMP) sensor package, which measures CO, NO2, O-3, and CO2. We explored three methods: (1) laboratory univariate linear regression, (2) empirical multiple linear regression, and (3) machine-learning-based calibration models using random forests (RF). Calibration models were developed for 16-19 RAMP monitors (varied by pollutant) using training and testing windows spanning August 2016 through February 2017 in Pittsburgh, PA, US. The random forest models matched (CO) or significantly outperformed (NO2, CO2, O-3) the other calibration models, and their accuracy and precision were robust over time for testing windows of up to 16 weeks. Following calibration, average mean absolute error on the testing data set from the random forest models was 38 ppb for CO (14% relative error), 10 ppm for CO2 (2% relative error), 3.5 ppb for NO2 (29% relative error), and 3.4 ppb for O-3 (15% relative error), and Pearson r versus the reference monitors exceeded 0.8 for most units. Model performance is explored in detail, including a quantification of model variable importance, accuracy across different concentration ranges, and performance in a range of monitoring contexts including the National Ambient Air Quality Standards (NAAQS) and the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. A key strength of the RF approach is that it accounts for pollutant cross-sensitivities. This highlights the importance of developing multipollutant sensor packages (as opposed to single-pollutant monitors); we determined this is especially critical for NO2 and CO2. The evaluation reveals that only the RF-calibrated sensors meet the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. We also demonstrate that the RF-model-calibrated sensors could detect differences in NO2 concentrations between a near-road site and a suburban site less than 1.5 km away. From this study, we conclude that combining RF models with carefully controlled state-of-the-art multipollutant sensor packages as in the RAMP monitors appears to be a very promising approach to address the poor performance that has plagued low-cost air quality sensors.
机译:低成本传感策略具有密集空气质量监测网络的承诺,这可以显着提高我们对个人空气污染暴露的理解。此外,低成本的空气质量传感器可以部署到存在有限监测的区域。然而,低成本传感器对环境条件和污染物交叉敏感性普遍敏感,这在历史上通过实验室校准解决了很差,限制了其效用进行监测。在这项研究中,我们研究了实时价格合理的多污染物(斜坡)传感器包的不同校准模型,其测量CO,NO2,O-3和CO2。我们探讨了三种方法:(1)实验室单变量线性回归,(2)经验多元线性回归,(3)使用随机林(RF)的基于机器学习的校准模型。使用培训和测试跨2016年8月至2017年2月在匹兹堡,美国,使用培训和测试Windows开发了校准模型(由污染物而异)。随机森林模型匹配(CO)或明显优于(NO2,CO2,O-3)其他校准模型,以及它们的准确性和精度随着时间的推移,用于测试长达16周的窗口。校准后,从随机林模型设置的平均平均绝对误差为CO(相对误差14%的相对误差)为38 ppb,CO2(相对误差2%),NO2的3.5 ppb(相对误差29%)为O-3(相对误差15%)和3.4 ppb,而Pearson R与参考监视器超过0.8,对于大多数单位超过0.8。详细探讨了模型性能,包括模型变量重要性,不同浓度范围的准确性,以及在一系列监测上下文中的性能,包括国家环境空气质量标准(NAAQS)和美国EPA空中传感器指南的最低数据建议个人曝光测量的质量。 RF方法的一个关键优势是它占污染物交叉敏感性。这凸显了开发多能传感器包装的重要性(与单污染物监测器相反);我们确定这对NO2和CO2特别重要。评估揭示了只有RF校准的传感器符合美国EPA空气传感器指南,用于个人曝光测量的最小数据质量的建议。我们还证明了RF模型校准的传感器可以检测近地点之间的NO2浓度和郊区距离的郊区的差异。根据这项研究,我们得出结论,与坡道监测器中的仔细控制最先进的多体塑料传感器包装相结合的RF模型似乎是一种非常有希望的方法,可以解决困扰低成本空气质量传感器的性能差的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号