首页> 外文期刊>Pattern recognition letters >An attention-based row-column encoder-decoder model for text recognition in Japanese historical documents
【24h】

An attention-based row-column encoder-decoder model for text recognition in Japanese historical documents

机译:基于注意力的行列编码器 - 解码器模型,用于日语历史文档中的文本识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an attention-based row-column encoder-decoder (ARCED) model for recognizing an input image of multiple text lines from Japanese historical documents without explicit segmentation of lines. The recognition system has three main parts: a feature extractor, a row-column encoder, and a decoder. We introduce a row-column BLSTM in the encoder and a residual LSTM network in the decoder. The whole system is trained end-to-end by a standard cross-entropy loss function, requiring only document images and their ground-truth text. We experimentally evaluate the performance of ARCED on the dataset of Japanese historical documents: Kana-PRMU. The results of the experiments show that ARCED outperforms the state-of-the-art recognition methods on the dataset. Furthermore, we demonstrate that the row-column BLSTM in the encoder and the residual LSTM in the decoder improves the performance of the encoder-decoder model for the recognition of Japanese historical document.
机译:本文介绍了一种基于关注的行列编码器 - 解码器(ARCED)模型,用于识别日语历史文档的多个文本行的输入图像,而无需显式分段。识别系统有三个主要部分:特征提取器,行列编码器和解码器。我们在编码器中引入了一个行列BLSTM和解码器中的残余LSTM网络。整个系统通过标准的跨熵损耗函数训练结束到底,只需要文档图像及其地面真值文本。我们通过实验评估日本历史文献数据集的表现:Kana-Prmu。实验结果表明,在数据集上占据了最先进的识别方法。此外,我们证明编码器中的行列BLSTM和解码器中的残余LSTM提高了编码器 - 解码器模型的识别识别日语历史文档的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号