首页> 外文期刊>Pattern recognition letters >Multi-criteria online frame-subset selection for autonomous vehicle videos
【24h】

Multi-criteria online frame-subset selection for autonomous vehicle videos

机译:自动车载视频的多标准在线帧集团选择

获取原文
获取原文并翻译 | 示例

摘要

Data Subset selection for training learning models for a variety of tasks, has been widely studied in the literature of batch mode active learning. Recent works attempt to utilize the model specific signals in the deep learning context for computer vision tasks. Companies, in their bid to create safe autonomous driving models, train and test their models on billions of miles of driving data; not all of which may be valuable for a training task. In this paper, we study the problem of frame-subset selection from autonomous vehicle driving data, for the problem of semantic segmentation - which is a crucial component of the perception module in an autonomous driving system. We find that state of the art methods for deep active learning do not utilize pairwise similarity between incoming and existing frames. We explore both active learning settings, where labels for incoming points are not available, as well as frame selection settings and find that our method selects more valuable frames than only score-based frame subset selection, or frame subset selection without label information. We demonstrate the effectiveness of our method using DeeplabV3+ model on both benchmark as well as datasets generated by driving simulators. Our generated dataset and code will be made publicly available. (C) 2020 Elsevier B.V. All rights reserved.
机译:数据子集选择用于各种任务的培训学习模型,在批量模式主动学习的文献中已经广泛研究。最近的作品试图利用计算机视觉任务的深度学习环境中的模型特定信号。公司在竞标时创建安全自主驾驶型号,培训并在数十亿里程的驾驶数据上测试他们的模型;并非所有这些都可能对培训任务有价值。在本文中,我们研究了自主车辆驱动数据的帧子集选择的问题,用于语义分割问题 - 这是自主驱动系统中的感知模块的重要组成部分。我们发现,用于深度活动学习的最先进方法不利用传入和现有帧之间的成对相似性。我们探索了活动学习设置,其中不可用的标签,以及帧选择设置,并发现我们的方法比仅基于刻度的帧子集选择,或没有标签信息的帧子集选择,我们的方法选择更有价值的帧。我们展示了我们使用Deeplabv3 +模型在驾驶模拟器生成的数据集上使用Deeplabv3 +模型的效果。我们生成的数据集和代码将公开可用。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号