首页> 外文期刊>Pattern recognition letters >CNN-based anti-spoofing two-tier multi-factor authentication system
【24h】

CNN-based anti-spoofing two-tier multi-factor authentication system

机译:基于CNN的反欺骗两层多重身份验证系统

获取原文
获取原文并翻译 | 示例

摘要

Many hybrid and multimodal biometric recognition techniques have been presented to provide secure and authentic systems, incorporating both soft and hard biometric schemes. This article proposes a new hybrid technique which ensures the authenticity of the user to the system, as well as monitors whether the user has passed the biometric system as a normal or spoofed one. The proposed scheme is twofold: Tier I integrates fingerprint, palm vein print and face recognition to match with the corresponding databases, and Tier II uses fingerprint, palm vein print and face anti-spoofing convolutional neural networks (CNN) based models to detect spoofing. In first stage, the hash of a fingerprint is compared with the fingerprint database. After a successful match of the fingerprint, it is tested on a CNN-based model of the fingerprint to verify whether it is a spoof or real. A similar process is repeated for the palm and face, and based on collective evidence, the system permits the user to login the system. Experimental results over five benchmark datasets verified the effectiveness of the proposed system in providing efficient and robust verification, overcoming the limitations in normal authentication and spoofing practices. (C) 2018 Elsevier B.V. All rights reserved.
机译:已经提出了许多混合和多模式生物特征识别技术,以提供结合了软生物识别方案和硬生物特征识别方案的安全可靠的系统。本文提出了一种新的混合技​​术,该技术可确保用户对系统的真实性,并监视用户是否已通过生物识别系统作为普通系统还是被欺骗的系统。提议的方案有两个方面:方法1将指纹,手掌静脉打印和面部识别集成到相应的数据库中,方法2则使用基于指纹,手掌静脉打印和面部反欺骗卷积神经网络(CNN)的模型来检测欺骗。在第一阶段,将指纹的哈希值与指纹数据库进行比较。成功匹配指纹后,将在基于CNN的指纹模型上对其进行测试,以验证该指纹是欺骗的还是真实的。对于手掌和脸部重复类似的过程,并且基于集体证据,系统允许用户登录系统。在五个基准数据集上的实验结果验证了所提出系统在提供有效且强大的验证方面的有效性,克服了常规身份验证和欺骗做法的局限性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号