首页> 外文期刊>Pattern recognition letters >Width optimization of RBF kernels for binary classification of support vector machines: A density estimation-based approach
【24h】

Width optimization of RBF kernels for binary classification of support vector machines: A density estimation-based approach

机译:支持向量机二进制分类的RBF内核宽度优化:基于密度估计的方法

获取原文
获取原文并翻译 | 示例

摘要

Kernels are often used for modelling non-linear data, developing a main role in models like the SVM. The optimization of its parameters to better fit each dataset is a frequently faced challenge: A bad choice of kernel parameters often implies a poor model. This problem is usually worked out using exhaustive search approaches, such as cross-validation. These methods, however, do not take into account existent information on data arrangement. This paper proposes an alternative approach, based on density estimation. By making use of density estimation methods to analyze the dataset structure, it is proposed a function over the kernel parameters. This function can be used to choose the parameters that best suit the data. (C) 2019 Elsevier B.V. All rights reserved.
机译:内核通常用于对非线性数据进行建模,从而在诸如SVM的模型中发挥主要作用。优化其参数以更好地适合每个数据集是一个经常面临的挑战:内核参数选择错误通常意味着模型较差。通常使用详尽的搜索方法(例如交叉验证)解决此问题。但是,这些方法未考虑有关数据安排的现有信息。本文提出了一种基于密度估计的替代方法。通过使用密度估计方法来分析数据集结构,提出了一个基于核参数的函数。此功能可用于选择最适合数据的参数。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号