首页> 外文期刊>Pattern recognition letters >A new hyperparameters optimization method for convolutional neural networks
【24h】

A new hyperparameters optimization method for convolutional neural networks

机译:卷积神经网络的超参数优化新方法

获取原文
获取原文并翻译 | 示例

摘要

The use of convolutional neural networks involves hyperparameters optimization. Gaussian process based Bayesian optimization (GPEI) has proven to be an effective algorithm to optimize several hyperparameters. Then deep networks for global optimization algorithm (DNGO) that used neural network as an alternative to Gaussian process was proposed to optimize more hyperparameters.This paper presents a new algorithm that combines multiscale and multilevel evolutionary optimization (MSMLEO) with GPEI to optimize dozens of hyperparameters. These hyperparameters are divided into two groups. The first group related with the sizes of layers and kernels are discrete integers. The second group related with learning rates and so on is continuous floating-point numbers. All combinations of the first group are corresponding to the combinations of grid points on multi-scale grids and MSMLEO launches GPEI to optimize the second group of hyperparameters while the first group keeps fixed. The output of convolutional networks configured with above two groups of optimized hyperparameters is used as the fitness of MSMLEO. MSMLEO alternates with GPEI to search the optimal hyperparameters from coarsest scale to finest scale. Experimental results show that our algorithm has better performance and adaptability on optimizing dozens of hyperparameters of neural networks with a variety of numerical types. (C) 2019 Published by Elsevier B.V.
机译:卷积神经网络的使用涉及到超参数优化。基于高斯过程的贝叶斯优化(GPEI)已被证明是优化多个超参数的有效算法。然后提出了使用神经网络替代高斯过程的深度优化全局网络算法(DNGO),以优化更多超参数。本文提出了一种新的算法,该算法结合了多尺度和多级进化优化(MSMLEO)与GPEI来优化数十个超参数。这些超参数分为两组。与层和内核的大小有关的第一组是离散整数。与学习率等相关的第二组是连续的浮点数。第一组的所有组合都对应于多尺度网格上的网格点的组合,MSMLEO启动GPEI以优化第二组超参数,而第一组保持固定。配置有以上两组优化超参数的卷积网络的输出用作MSMLEO的适用性。 MSMLEO与GPEI交替搜索从最粗尺度到最佳尺度的最佳超参数。实验结果表明,该算法在优化多种数值类型的神经网络的超参数中具有较好的性能和适应性。 (C)2019由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号