首页> 外文期刊>Pattern recognition letters >Towards recovery of conditional vectors from conditional generative adversarial networks
【24h】

Towards recovery of conditional vectors from conditional generative adversarial networks

机译:致力于从条件生成对抗网络中恢复条件向量

获取原文
获取原文并翻译 | 示例

摘要

A conditional Generative Adversarial Network allows for generating samples conditioned on certain external information. Being able to recover latent and conditional vectors from a conditional GAN can be potentially valuable in various applications, ranging from image manipulation for entertaining purposes to diagnosis of the neural networks for security purposes. In this work, we show that it is possible to recover both latent and conditional vectors from generated images given the generator of a conditional generative adversarial network. Such a recovery is not trivial due to the often multi-layered non-linearity of deep neural networks. Furthermore, the effect of such recovery applied on real natural images are investigated. We discovered that there exists a gap between the recovery performance on generated and real images, which we believe comes from the difference between generated data distribution and real data distribution. Experiments are conducted to evaluate the recovered conditional vectors and the reconstructed images from these recovered vectors quantitatively and qualitatively, showing promising results. (C) 2019 Elsevier B.V. All rights reserved.
机译:有条件的生成对抗网络允许根据某些外部信息生成样本。能够从条件GAN中恢复潜在向量和条件向量在各种应用中可能具有潜在价值,这些应用从出于娱乐目的的图像处理到出于安全目的的神经网络诊断。在这项工作中,我们证明给定条件生成对抗网络的生成器,可以从生成的图像中恢复潜在矢量和条件矢量。由于深度神经网络通常是多层非线性的,因此这种恢复并非无关紧要。此外,研究了这种恢复对真实自然图像的影响。我们发现,在生成的图像和实际图像之间的恢复性能之间存在差距,我们认为这是由于生成的数据分布与实际数据分布之间的差异造成的。进行实验以定量和定性评估回收的条件向量和从这些回收的向量重建的图像,显​​示出令人鼓舞的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号