首页> 外文期刊>Biomedical signal processing and control >High-resolution dermoscopy image synthesis with conditional generative adversarial networks
【24h】

High-resolution dermoscopy image synthesis with conditional generative adversarial networks

机译:高分辨率Dermoscopy图像合成,有条件生成的对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Background and objective: Due to the lack of training data, the accurate classification of skin lesions still has great challenges. Generative adversarial networks (GANs) have been used to synthesize dermoscopy images successfully. Unfortunately, previous methods usually directly feed category labels into GANs and cannot provide effective information gain for the classification model. This paper studies a specific conditional image synthesis method, which could convert semantic segmentation map to dermoscopy image.Methods: We proposed a conditional GANs (CGAN) for high-resolution dermoscopy images synthesis. First, we established an effective label mapping with pathological significance by combining the segmentation mask and category label of skin lesions. Then, a CGAN based on the image-to-image translation framework is constructed and took the previous label mapping as input to generate dermoscopy images. Especially, the shallow and deep features are combined together in the generator to avoid the loss of semantic information, and discriminator-based feature matching loss is introduced to improve the quality of generated images.Results: The proposed method is evaluated in ISIC-2017 skin dataset. Compared with several representative GANs architectures including the newest semantic image synthesis method, the proposed method has better performance in both visual effect and quantitative evaluation. Moreover, by using the generated images, the average AUC values of several skin lesion classification models can be improved effectively.Conclusions: The proposed method can generate high-realistic and high-resolution demoscopy images, leading to performance improvement of skin lesion classification models, which could also be helpful for solving data shortages and classes imbalance problems in the field of medical image analysis.
机译:背景和目的:由于缺乏培训数据,皮肤病变的准确分类仍然存在巨大的挑战。生成的对抗网络(GANS)已被用于合成Dermoscopy图像成功。不幸的是,以前的方法通常将类别标签直接进入GAN,不能为分类模型提供有效的信息增益。本文研究了一种特定的条件图像合成方法,可以将语义分割图转化为Dermocy映像。方法:我们提出了一种有条件的GANS(Cgan),用于高分辨率Dermoscopy图像合成。首先,通过组合皮肤病变的分割掩模和类别标记,建立了具有病理意义的有效标签映射。然后,构建基于图像到图像转换框架的CGAN,并将先前的标签映射作为输入以生成Dermicopy图像。特别地,浅和深度的特征在发电机中组合在一起,以避免语义信息的丢失,并引入基于鉴别的特征匹配损失以提高生成的图像的质量。结果:所提出的方法在ISIC-2017皮肤中进行评估数据集。与包括最新的语义图像合成方法在内的几个代表性的GAN架构相比,所提出的方法在视觉效果和定量评估中具有更好的性能。此外,通过使用所生成的图像,可以有效地提高几种皮肤病变分类模型的平均AUC值。结论:所提出的方法可以产生高现实和高分辨率的解剖图像,从而产生皮肤病变分类模型的性能改善,这也有助于解决医学图像分析领域的数据短缺和类别不平衡问题。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第2期|102224.1-102224.10|共10页
  • 作者单位

    Chongqing Normal Univ Coll Comp & Informat Sci Chongqing 401331 Peoples R China;

    Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Wenzhou Med Univ Wenzhou Clin Inst 3 Wenzhou 325000 Peoples R China|Wenzhou Peoples Hosp Wenzhou 325000 Peoples R China;

    Wenzhou Med Univ Wenzhou Clin Inst 3 Wenzhou 325000 Peoples R China|Wenzhou Peoples Hosp Wenzhou 325000 Peoples R China;

    Wenzhou Med Univ Wenzhou Clin Inst 3 Wenzhou 325000 Peoples R China|Wenzhou Peoples Hosp Wenzhou 325000 Peoples R China;

    Chongqing Normal Univ Coll Comp & Informat Sci Chongqing 401331 Peoples R China;

    Wenzhou Med Univ Wenzhou Clin Inst 3 Wenzhou 325000 Peoples R China|Wenzhou Peoples Hosp Wenzhou 325000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Generative adversarial networks; Dermoscopy image; Skin lesion; Feature matching loss; Data shortages;

    机译:生成的对抗网络;Dermoscopy图像;皮肤病变;特征匹配损失;数据短缺;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号