首页> 外文期刊>Pattern recognition letters >LRID: A new metric of multi-class imbalance degree based on likelihood-ratio test
【24h】

LRID: A new metric of multi-class imbalance degree based on likelihood-ratio test

机译:LRID:一种基于似然比检验的多类不平衡度新指标

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new likelihood ratio imbalance degree (LRID) to measure the class-imbalance extent of multi-class data. Imbalance ratio (IR) is usually used to measure class-imbalance extent in imbalanced learning problems. However, IR cannot capture the detailed information in the class distribution of multi-class data, because it only utilises the information of the largest majority class and the smallest minority class. Imbalance degree (ID) has been proposed to solve the problem of IR for multi-class data. However, we note that improper use of distance metric in ID can have harmful effect on the results. In addition, ID assumes that data with more minority classes are more imbalanced than data with less minority classes, which is not always true in practice. Thus ID cannot provide reliable measurement when the assumption is violated. In this paper, we propose a new metric based on the likelihood-ratio test, LRID, to provide a more reliable measurement of class-imbalance extent for multiclass data. Experiments on both simulated and real data show that LRID is competitive with IR and ID, and can reduce the negative correlation with F1 scores by up to 0.55. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们引入了一种新的似然比不平衡度(LRID)来衡量多类数据的类不平衡程度。不平衡率(IR)通常用于衡量不平衡学习问题中的班级不平衡程度。但是,IR无法捕获多类数据的类分布中的详细信息,因为它仅利用最大多数类和最小少数类的信息。已经提出不平衡度(ID)来解决多类数据的IR问题。但是,我们注意到ID中距离度量的不正确使用可能会对结果产生有害影响。此外,ID假设少数派类别较多的数据比少数派类别较少的数据更加不平衡,这在实践中并不总是正确的。因此,当违反假设时,ID无法提供可靠的度量。在本文中,我们提出了一种基于似然比检验的新指标LRID,以便为多类数据提供更可靠的类不平衡程度度量。在模拟和真实数据上的实验表明,LRID与IR和ID具有竞争性,并且可以将与F1分数的负相关性降低多达0.55。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2018年第1期|36-42|共7页
  • 作者单位

    Univ Kent, Sch Math Stat & Actuarial Sci, Parkwood Rd, Canterbury CT2 7FS, Kent, England;

    Beijing Univ Posts & Telecommun, Pattern Recognit & Intelligent Syst Lab, Beijing 100876, Peoples R China;

    City Univ London, Cass Business Sch, Fac Actuarial Sci & Insurance, London EC1Y 8TZ, England;

    Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China;

    UCL, Dept Stat Sci, London WC1E 6BT, England;

    UCL, Dept Secur & Crime Sci, London WC1E 6BT, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Imbalanced learning; Imbalance degree; Likelihood ratio; Class distribution;

    机译:学习失衡;失衡度;喜欢率;班级分配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号