首页> 外文期刊>Pattern recognition letters >A graph distance metric combining maximum common subgraph and minimum common supergraph
【24h】

A graph distance metric combining maximum common subgraph and minimum common supergraph

机译:结合最大公共子图和最小公共上图的图距离度量

获取原文
获取原文并翻译 | 示例

摘要

The relationship between two important problems in pattern recognition using attributed relational graphs. the maximum common subgraph and the minimum common supergraph of two graphs, is established by means of simple constructions, which allow to obtain the maximum common subgraph from the minimum common supergraph, and vice versa. On this basis, a new graph distance metric is proposed for measuring similarities between objects represented by attributed relational graphs. The proposed metric can be computed by a straightforward extension of any algorithm that implements error-correcting graph matching, when run under an appropriate cost function, and the extension only takes time linear in the size of the graphs.
机译:使用属性关系图进行模式识别的两个重要问题之间的关系。通过简单的结构可以建立两个图的最大公共子图和最大公共子图,这可以从最小公共上图获得最大公共子图,反之亦然。在此基础上,提出了一种新的图距离度量,用于度量属性关系图表示的对象之间的相似度。当在适当的成本函数下运行时,可以通过实现误差校正图形匹配的任何算法的直接扩展来计算所提出的度量,并且扩展仅花费时间在图形大小上线性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号