首页> 外文期刊>Pattern recognition letters >Similarity learning for graph-based image representations
【24h】

Similarity learning for graph-based image representations

机译:基于图的图像表示的相似性学习

获取原文
获取原文并翻译 | 示例

摘要

Visual database engines are usually based on predefined criteria for retrieving the images in response to a given query. In this paper, we propose a novel approach based on neural networks by which the retrieval criterion is derived on the basis of learning from examples. In particular, the proposed approach uses a graph-based image representation that denotes the relationships among regions in the image and on recursive neural networks which can process directed ordered acyclic graphs. The graph-based representation combines structural and subsymbolic features of the image, while recursive neural networks can discover the optimal representation for searching the image database. A set of preliminary experiments on artificial images clearly indicate that the proposed approach is very promising.
机译:可视数据库引擎通常基于预定义的标准,以响应于给定查询来检索图像。在本文中,我们提出了一种基于神经网络的新方法,该方法基于对示例的学习而得出了检索标准。特别地,所提出的方法使用基于图的图像表示,该图像表示表示图像中的区域以及在递归神经网络上的区域之间的关系,该递归神经网络可以处理有向有序无环图。基于图的表示结合了图像的结构和亚符号特征,而递归神经网络可以发现用于搜索图像数据库的最佳表示。一组关于人工图像的初步实验清楚地表明,提出的方法非常有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号