首页> 外文期刊>Data & Knowledge Engineering >Graph-based representation for similarity retrieval of symbolic images
【24h】

Graph-based representation for similarity retrieval of symbolic images

机译:基于图的表示形式,用于符号图像的相似性检索

获取原文
获取原文并翻译 | 示例

摘要

Image retrieval from an image database by the image objects and their spatial relationships has emerged as an important research subject in these decades. To retrieve images similar to a given query image, retrieval methods must assess the similarity degree between a database image and the query image by the extracted features with acceptable efficiency and effectiveness. This paper proposes a graph-based model SRG (spatial relation graph) to represent the semantic information of the contained objects and their spatial relationships in an image with no file annotation. In an SRG graph, the image objects are symbolized by the predefined class names as vertices and the spatial relations between object pairs are represented as arcs. The proposed model assesses the similarity degree between two images by calculating the maximum common subgraph of two corresponding SRG's through intersection, which has quadratic time complexity owing to the characteristics of SRG. Its efficiency remains quadratic regardless of the duplication rate of the object symbols. The extended model SRG_T is also proposed, with the same time complexity, for the applications that need to consider the topo-logical relations among objects. A synthetic symbolic image database and an existing image dataset are used in the conducted experiments to verify the performance of the proposed models. The experimental results show that the proposed models have compatible retrieval quality with remarkable efficiency improvements compared with three well-known methods LCS_Clique, SIM_R, and 2D Be-string, where LCS_Clique utilizes the number of objects in the maximum common sub-image as its similarity function, SIM_R uses accumulation-based similarity function of similar object pairs, and 2D Be-string calculates the similarity of 2D patterns by the linear combination of two 1D similarities.
机译:在过去的几十年中,通过图像对象及其空间关系从图像数据库中检索图像已成为重要的研究课题。为了检索类似于给定查询图像的图像,检索方法必须通过提取的特征以可接受的效率和有效性来评估数据库图像和查询图像之间的相似度。本文提出了一种基于图的模型SRG(空间关系图)来表示包含对象的语义信息及其在没有文件注释的图像中的空间关系。在SRG图中,图像对象由预定义的类名称符号化为顶点,而对象对之间的空间关系则表示为圆弧。所提出的模型通过计算两个对应的SRG的最大公共子图通过相交来评估两个图像之间的相似度,由于SRG的特征,该子图具有二次时间复杂度。无论对象符号的重复率如何,其效率都保持二次方。对于需要考虑对象之间拓扑关系的应用,还提出了具有相同时间复杂度的扩展模型SRG_T。在进行的实验中使用了合成符号图像数据库和现有图像数据集,以验证所提出模型的性能。实验结果表明,与LCS_Clique,SIM_R和2D Be-string这三种著名方法相比,所提出的模型具有兼容的检索质量,并且效率显着提高,其中LCS_Clique利用最大公共子图像中的对象数量作为相似度函数,SIM_R使用相似对象对的基于累积的相似度函数,并且2D Be-string通过两个1D相似度的线性组合来计算2D模式的相似度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号