首页> 外文OA文献 >Graph-based retrieval of multi-modality medical images : a comparison of representations using simulated images
【2h】

Graph-based retrieval of multi-modality medical images : a comparison of representations using simulated images

机译:基于图的多模态医学图像检索:使用模拟图像进行表示比较

摘要

Content-based image retrieval (CBIR) is an image search technique that utilises visual features as search criteria; it has potential clinical applications in evidence-based diagnosis, physician training, and biomedical research. Graph-based CBIR techniques have high accuracy when retrieving images by the similarity of the spatial arrangement of their constituent objects but these techniques were initially designed for single-modality images and have limited retrieval capabilities when multi-modality images, such as combined positron emission tomography and computed tomography (PET-CT), are considered. In this paper, we present a graph-based CBIR approach for multimodality images that integrates modality-specific features on graph vertices and adapts a well-established graph similarity scheme to account for varying vertex feature sets. Furthermore, we propose a graph pruning method that removes redundant edges using the spatial proximity of image regions. We evaluated our work using two simulated data sets, consisting of 2D liver shapes and 3D whole-body lymphoma images. In our experiments we achieved a higher level of retrieval precision using our graph method when compared to conventional graph-based retrieval, demonstrating that our proposed method enabled new capabilities and improved multi-modality CBIR.
机译:基于内容的图像检索(CBIR)是一种利用视觉特征作为搜索标准的图像搜索技术。它在基于证据的诊断,医师培训和生物医学研究中具有潜在的临床应用。基于图的CBIR技术在通过其组成对象的空间排列的相似性检索图像时具有很高的准确性,但这些技术最初是为单模态图像设计的,而在多模态图像(如组合正电子发射断层扫描)中的检索能力有限以及计算机断层扫描(PET-CT)。在本文中,我们为多模态图像提供了一种基于图的CBIR方法,该方法在图顶点上集成了特定于模态的特征,并采用了完善的图相似度方案来解决变化的顶点特征集。此外,我们提出了一种图形修剪方法,该方法使用图像区域的空间接近度来消除多余的边缘。我们使用两个模拟数据集(包括2D肝脏形状和3D全身淋巴瘤图像)评估了我们的工作。在我们的实验中,与传统的基于图的检索相比,使用图法可以实现更高水平的检索精度,这表明我们提出的方法实现了新功能并改进了多模态CBIR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号