首页> 外文期刊>Pattern recognition letters >Performance of similarity measures based on histograms of local image feature vectors
【24h】

Performance of similarity measures based on histograms of local image feature vectors

机译:基于局部图像特征向量直方图的相似性度量性能

获取原文
获取原文并翻译 | 示例

摘要

We investigate similarity measures for image retrieval from databases based on histograms of local feature vectors. The feature vectors are obtained from grouping quantized block transforms coefficients and thresholding. After preliminaries on block transforms we are introducing binary DC and AC feature vectors. Subsequently ternary DC and AC vectors are defined. Next we show how the histograms of vectors defined can be combined to form similarity measure for image retrieval from database. We formulate the database training and retrieval problem using the defined similarity measures. Performance results are shown using widely used FERET and ORL databases and the cumulative match score evaluation. We show that despite simplicity the proposed measures provide results which are on par with best results using other methods. This indicates that statistics based retrieval should not be underestimated comparing to structural methods.
机译:我们研究了基于局部特征向量直方图从数据库中检索图像的相似性度量。特征向量是从对量化块变换系数和阈值进行分组获得的。在对块变换进行初步介绍之后,我们将介绍二进制DC和AC特征向量。随后定义三元DC和AC矢量。接下来,我们展示如何将定义的向量直方图进行组合以形成相似性度量,以便从数据库中检索图像。我们使用定义的相似性度量来制定数据库训练和检索问题。使用广泛使用的FERET和ORL数据库以及累积的比赛得分评估来显示性能结果。我们表明,尽管简单,但所提出的措施仍可提供与使用其他方法可获得的最佳结果相当的结果。这表明与结构方法相比,基于统计的检索不应被低估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号