首页> 外文期刊>Pattern recognition letters >Multi-weight vector projection support vector machines
【24h】

Multi-weight vector projection support vector machines

机译:多权向量投影支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Proximal support vector machine via generalized eigenvalues (GEPSVM), as a variant of SVM, is originally motivated to effectively classify XOR problems that are not linearly separable. Through analysis and experiments, it has been shown to be better than SVM in favor of reduction of time complexity. However, the major disadvantages of GEPSVM lie in two aspects: (1) some complex XOR problems cannot be effectively classified; (2) it may fail to get a stable solution due to the matrix singularity occurring. By defining a new principle, we propose an original algorithm, called multi-weight vector support vector machines (MVSVM). The proposed method not only keeps the superior characteristics of GEPSVM, but also has its additional edges: (1) it performs well on complex XOR datasets; (2) instead of generalized eigenvalue problems in GEPSVM, MVSVM solves two standard eigenvalue problems to avoid the matrix singularity of GEPSVM; (3) it has comparable or better generalization ability compared to SVM and GEPSVM; (4) it is the fastest among three algorithms. Experiments tried out on artificial and public datasets also indicate the effectiveness of MVSVM.
机译:作为SVM的一种变体,通过广义特征值(GEPSVM)的近邻支持向量机最初旨在有效地对不可线性分离的XOR问题进行分类。通过分析和实验,它在减少时间复杂度方面优于SVM。然而,GEPSVM的主要缺点有两个方面:(1)一些复杂的XOR问题无法得到有效分类。 (2)由于出现矩阵奇异性,可能无法获得稳定的解。通过定义新原理,我们提出了一种原始算法,称为多权向量支持向量机(MVSVM)。所提出的方法不仅保留了GEPSVM的优良特性,而且还具有其他优势:(1)在复杂的XOR数据集上表现良好; (2)MVSVM代替了GEPSVM中的广义特征值问题,解决了两个标准特征值问题,避免了GEPSVM的矩阵奇异性; (3)与SVM和GEPSVM相比具有同等或更好的泛化能力; (4)它是三种算法中最快的。在人工和公共数据集上进行的实验也表明了MVSVM的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号