首页> 外文期刊>Pattern recognition letters >Enhanced multi-weight vector projection support vector machine
【24h】

Enhanced multi-weight vector projection support vector machine

机译:增强型多权向量投影支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Recently, we have developed an effective classifier, called Multi-weight vector projection support vector machine (MVSVM). Like traditional multisurface support vector machine Generalized-Eigenvalue-based Mulitisurface Support Vector Machine (GEPSVM), MVSVM can fast complete the computation and simultaneously handle the complex Exclusive Or (XOR) problems well. In addition, MVSVM still shows the more promising results than GEPSVM for different classification tasks. Despite the effectiveness of MVSVM, there is a serious limitation, which is that the number of the projection weight vectors for each class is limited to one. Intuitively, it is not enough to use only one projection weight vector for each class to obtain better classification. In order to address this problem, we, in this paper, develop enhanced MVSVM (EMVSVM), which is based on MVSVM. For a particular class, EMVSVM maximizes the distances from its projected average vector to the projected points from different classes to find better separability, which is different from MVSVM which maximizes the separability between classes by enforcing the maximization of the distances between the average vectors of different classes. Doing so can make EMVSVM obtain more than one discriminative weight-vector projections for each class due to that the rank of the newly-formed between-class scatter matrix is enlarged. From the statistical viewpoint, we analyze the proposed approach. Experimental results on public datasets indicate the effectiveness and efficiency of EMVSVM.
机译:最近,我们开发了一种有效的分类器,称为多权向量投影支持向量机(MVSVM)。与传统的多表面支持向量机基于通用特征值的多表面支持向量机(GEPSVM)一样,MVSVM可以快速完成计算并同时很好地处理复杂的“异或”(XOR)问题。此外,对于不同的分类任务,MVSVM仍显示出比GEPSVM更有希望的结果。尽管MVSVM有效,但仍然存在严重的局限性,即每个类别的投影权重向量的数量限制为一个。直观地,仅对每个类别使用一个投影权重向量来获得更好的分类是不够的。为了解决这个问题,我们在本文中开发了基于MVSVM的增强型MVSVM(EMVSVM)。对于特定类别,EMVSVM最大化从其投影平均向量到不同类别的投影点的距离,以找到更好的可分离性,这与MVSVM不同,MVSVM通过强制使不同向量的平均向量之间的距离最大化来最大化类之间的可分离性类。这样做可以使EMVSVM为每个类别获得一个以上的判别权向量投影,这是因为新形成的类别间散布矩阵的等级被扩大了。从统计的角度,我们分析提出的方法。在公共数据集上的实验结果表明了EMVSVM的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号