首页> 外文期刊>Pattern recognition letters >Nonnegative Matrix Factorization on Orthogonal Subspace
【24h】

Nonnegative Matrix Factorization on Orthogonal Subspace

机译:正交子空间上的非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative Matrix Factorization (NMF), a parts-based representation using two small factor matrices to approximate an input data matrix, has been widely used in data mining, pattern recognition and signal processing. Orthogonal NMF which imposes orthogonality constraints on the factor matrices can improve clustering performance. However, the existing orthogonal NMF algorithms are either computationally expensive or have to incorporate prior information to achieve orthogonality. In our research, we propose an algorithm called Nonnegative Matrix Factorization on Orthogonal Subspace (NMFOS), in which the generation of orthogonal factor matrices is part of objective function minimization. Thus, orthogonality is achieved without resorting to additional constraints, and the computational complexity is decreased. We develop two algorithms based on the Euclidean distance metric and the generalized Kullback-Leibler divergence, respectively. Experiments on 10 document datasets show that NMFOS improves clustering accuracy. On a facial image database, NMFOS achieves a better parts-based representation with a significant reduction in computational complexity.
机译:非负矩阵分解(NMF)是使用两个小因子矩阵近似输入数据矩阵的基于零件的表示形式,已广泛用于数据挖掘,模式识别和信号处理。对因子矩阵施加正交性约束的正交NMF可以提高聚类性能。但是,现有的正交NMF算法要么计算量大,要么必须合并先验信息以实现正交性。在我们的研究中,我们提出了一种称为正交子空间的非负矩阵分解算法(NMFOS),其中正交因子矩阵的生成是目标函数最小化的一部分。因此,在不借助附加约束的情况下实现了正交性,并且降低了计算复杂度。我们分别基于欧几里得距离度量和广义Kullback-Leibler散度开发了两种算法。对10个文档数据集的实验表明NMFOS可以提高聚类精度。在人脸图像数据库上,NMFOS实现了更好的基于零件的表示,并且大大降低了计算复杂性。

著录项

  • 来源
    《Pattern recognition letters》 |2010年第9期|p.905-911|共7页
  • 作者

    Zhao Li; Xindong Wu; Hong Peng;

  • 作者单位

    School of Computer Science and Engineering, South China University of Technology, PR China Department of Computer Science, University of Vermont, United States;

    Department of Computer Science, University of Vermont, United States School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, PR China;

    School of Computer Science and Engineering, South China University of Technology, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nonnegative matrix factorization; orthogonality; clustering;

    机译:非负矩阵分解正交性聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号