首页> 外文期刊>Signal processing >Structured subspace learning-induced symmetric nonnegative matrix factorization
【24h】

Structured subspace learning-induced symmetric nonnegative matrix factorization

机译:结构化子空间学习诱导的对称非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Symmetric NMF (SNMF) is able to determine the inherent cluster structure with the constructed graph. However, the mapping between the empirically constructed similarity representation and the desired one may contain complex structural and hierarchical information, which is not easy to capture with single learning approaches. Then, we propose a novel Structured Subspace Learning-induced Symmetric Nonnegative Matrix Factorization (SSLSNMF) in this paper. Based on the similarity space to be learned, SSLSNMF further learns a latent subspace, which considers the global and local structure of the data. Since SSLSNMF is formulated in a semi-supervised way, the supervisory information with constraints of cannot-link and must-link is also utilized. To guarantee that the latent similarity subspace to be discriminative, the global and local structures of the data as well as structural consistencies for limited labels in a semi-supervised manner are learned simultaneously in the proposed framework. An effective alternating iterative algorithm is proposed with proved convergence. Experiments conducted on six benchmark datasets show that better results can be obtained compared with state-of-the-art methods.
机译:对称NMF(SNMF)能够使用构造的图形确定固有的群集结构。然而,经验构造的相似度表示和期望的相似性表示之间的映射可以包含复杂的结构和分层信息,这不易以单一学习方法捕获。然后,我们提出了一种新颖的结构化子空间学习诱导的对称非负面矩阵分解(SSLSNMF)。基于要学习的相似空间,SSLSNMF进一步了解潜在子空间,该子空间考虑了数据的全局和本地结构。由于SSLSNMF以半监督方式配制,因此还使用了无法链接和必须链接的限制的监督信息。为了保证潜在的相似性子空间,数据的全球和局部结构以及以半监督方式的有限标签的结构一致性在拟议的框架中学习。提出了一种有效的交替的迭代算法,具有证明会聚。在六个基准数据集上进行的实验表明,与最先进的方法相比,可以获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号