首页> 外文期刊>ACM transactions on intelligent systems >Discriminative and Orthogonal Subspace Constraints-Based Nonnegative Matrix Factorization
【24h】

Discriminative and Orthogonal Subspace Constraints-Based Nonnegative Matrix Factorization

机译:基于判别和正交子空间约束的非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) is one widely used feature extraction technology in the tasks of image clustering and image classification. For the former task, various unsupervised NMF methods based on the data distribution structure information have been proposed. While for the latter task, the label information of the dataset is one very important guiding. However, most previous proposed supervised NMF methods emphasis on imposing the discriminant constraints on the coefficient matrix. When dealing with new coming samples, the transpose or the pseudoinverse of the basis matrix is used to project these samples to the low dimension space. In this way, the label influence to the basis matrix is indirect. Although, there are also some methods trying to constrain the basis matrix in NMF framework, either they only restrict within-class samples or impose improper constraint on the basis matrix. To address these problems, in this article a novel NMF framework named discriminative and orthogonal subspace constraints-based nonnegative matrix factorization (DOSNMF) is proposed. In DOSNMF, the discriminative constraints are imposed on the projected subspace instead of the directly learned representation. In this manner, the discriminative information is directly connected with the projected subspace. At the same time, an orthogonal term is incorporated in DOSNMF to adjust the orthogonality of the learned basis matrix, which can ensure the orthogonality of the learned subspace and improve the sparseness of the basis matrix at the same time. This framework can be implemented in two ways. The first way is based on the manifold learning theory. In this way, two graphs, i.e., the intrinsic graph and the penalty graph, are constructed to capture the intra-class structure and the inter-class distinctness. With this design, both the manifold structure information and the discriminative information of the dataset are utilized. For convenience, we name this method as the name of the framework, i.e., DOSNMF. The second way is based on the Fisher's criterion, we name it Fisher's criterion-based DOSNMF (FDOSNMF). The objective functions of DOSNMF and FDOSNMF can be easily optimized using multiplicative update (MU) rules. The new methods are tested on five datasets and compared with several supervised and unsupervised variants of NMF. The experimental results reveal the effectiveness of the proposed methods.
机译:非负矩阵分解(NMF)是一种在图像聚类和图像分类任务中广泛使用的特征提取技术。针对前一项任务,提出了各种基于数据分布结构信息的无监督NMF方法。对于后一项任务,数据集的标签信息是一个非常重要的指导。但是,大多数先前提出的监督NMF方法都强调将判别约束施加在系数矩阵上。当处理新来的样本时,基矩阵的转置或伪逆用于将这些样本投影到低维空间。这样,标签对基础矩阵的影响是间接的。虽然,也有一些方法试图约束NMF框架中的基本矩阵,但它们要么仅限制类内样本,要么对基本矩阵施加不适当的约束。为了解决这些问题,在本文中,提出了一种新的NMF框架,称为区分和正交子空间约束基于非负矩阵分解(DOSNMF)。在DOSNMF中,区分约束施加在投影子空间上,而不是直接学习的表示上。以这种方式,判别信息与投影子空间直接相连。同时,在DOSNMF中引入正交项,以调整学习的基本矩阵的正交性,可以保证学习的子空间的正交性,同时提高基本矩阵的稀疏性。该框架可以通过两种方式实现。第一种方法基于流形学习理论。以这种方式,构造了两个图,即固有图和惩罚图,以捕获类内结构和类间差异。通过这种设计,可以利用流形结构信息和数据集的判别信息。为了方便起见,我们将此方法命名为框架的名称,即DOSNMF。第二种方法基于费舍尔准则,我们将其命名为基于费舍尔准则的DOSNMF(FDOSNMF)。可以使用乘法更新(MU)规则轻松优化DOSNMF和FDOSNMF的目标功能。新方法在五个数据集上进行了测试,并与NMF的几个监督和非监督变体进行了比较。实验结果表明了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号