首页> 外文期刊>Pattern recognition letters >Accurate M-hausdorff distance similarity combining distance orientation for matching multi-modal sensor images
【24h】

Accurate M-hausdorff distance similarity combining distance orientation for matching multi-modal sensor images

机译:精确的M-hausdorff距离相似度结合距离方向以匹配多模式传感器图像

获取原文
获取原文并翻译 | 示例

摘要

Although Hausdorff distance (HD) has been widely used in an object identification between same modality images, the object identification between different modality images are challenging because of the poor edge correspondence coming from heterogeneous image characteristics. This paper proposes a robust Hausdorff distance similarity (accurate M-HD: AMHD) between multi-modal sensor data. To improve robustness against the outliers when comparing the pairs of multi-modal images, the AMHD utilizes the orientation information of each point in addition to the distance transform (DT) map as a similarity criterion. In the AMHD scheme, the DT map is generated by applying dead-reckoning signed DT, and the distance orientation (DO) map is constructed by employing the Kirsch compass kernel to the DT map, respectively. Using the additional information on the DO, the proposed similarity can precisely examine the outliers including non-correspondent edges and noises, and discard false correspondent distances efficiently. The computer simulations show that the proposed AMHD yields superior performance at aligning multi-modal sensor data (visible-thermal IR face images) over those achieved by the conventional robust schemes in terms of the position error between the ground truth and the computed position.
机译:尽管Hausdorff距离(HD)已被广泛用于同一模态图像之间的对象识别,但由于来自异质图像特性的边缘对应性较差,因此不同模态图像之间的对象识别仍具有挑战性。本文提出了多模式传感器数据之间的鲁棒Hausdorff距离相似度(准确的M-HD:AMHD)。为了在比较多模态图像对时提高针对异常值的鲁棒性,除了距离变换(DT)映射作为相似性准则之外,AMHD还利用了每个点的方向信息。在AMHD方案中,通过应用死区重击带符号DT来生成DT映射,并通过将Kirsch指南针内核应用于DT映射来构建距离方向(DO)映射。使用关于DO的附加信息,提出的相似性可以精确地检查异常值(包括非对应边缘和噪声),并有效地丢弃错误的对应距离。计算机仿真表明,就地面真相和计算位置之间的位置误差而言,所提出的AMHD在对准多模式传感器数据(可见热红外人脸图像)方面比常规鲁棒方案获得的性能更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号