首页> 外文期刊>Remote Sensing >Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression
【24h】

Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

机译:时间图像的辐射归一化,结合距离和相似光谱测量,密度散点图分析和稳健回归的自动检测伪不变特征

获取原文
           

摘要

Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles). These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs). This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity), density scatter plot analysis (ridge method), and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM), spectral correlation (Spectral Correlation Mapper, SCM), and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes) are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate) between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate strongly from the rest of the data in which it occurs, and as in our case, change areas. New sequential methods enable one to select by different attributes, a number of invariant targets over the brightness range of the images.
机译:由于多种因素(大气条件,地球太阳距离,探测器校准,照明和视角),很难在轨道图像中保持辐射精度。为了获得时间图像之间的辐射一致性,必须删除这些有害的影响,仅留下陆地辐射,以实现最佳的变化检测。通过使用反射率不随时间显着变化的参考目标(即伪不变特征(PIF)),开发了多种相对辐射校正技术来校正或校正同一区域的图像。本文提出了一种用于辐射归一化的新技术,该技术使用三种顺序方法来进行准确的PIF选择:时间数据的光谱测量(光谱距离和相似度),密度散布图分析(岭方法)和鲁棒回归。所使用的光谱度量是光谱角度(光谱角度映射器,SAM),光谱相关性(光谱相关映射器,SCM)和欧几里德距离。为每个像素计算在时间t1和t2处的光谱之间的光谱测量。使用阈值分类后,可以定义具有相同光谱行为的点,包括PIF。距离和相似性度量是互补的,可以一起计算。脊线法使用从不同日期获取的图像生成的密度图来选择PIF。在密度图中,不变像素一起形成高密度脊,而变异像素(云和土地覆被变化)则以低密度散布,从而易于排除。最后,对选定的PIF进行时间带对之间的鲁棒回归(M估计),以检测和消除异常值,并获得给定目标点集的最佳线性方程。稳健的回归对异常值不敏感,即观察到的值似乎与发生该值的其余数据有很大偏差,并且在我们的情况下,变化区域也是如此。新的顺序方法使人们可以通过不同的属性选择图像亮度范围内的许多不变目标。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号