首页> 外文期刊>Pattern recognition letters >Robust speech recognition using spatial-temporal feature distribution characteristics
【24h】

Robust speech recognition using spatial-temporal feature distribution characteristics

机译:利用时空特征分布特性的鲁棒语音识别

获取原文
获取原文并翻译 | 示例

摘要

Histogram equalization (HEQ) is one of the most efficient and effective techniques that have been used to reduce the mismatch between training and test acoustic conditions. However, most of the current HEQ methods are merely performed in a dimension-wise manner and without allowing for the contextual relationships between consecutive speech frames. In this paper, we present several novel HEQ approaches that exploit spatial-temporal feature distribution characteristics for speech feature normalization. The automatic speech recognition (ASR) experiments were carried out on the Aurora-2 standard noise-robust ASR task. The performance of the presented approaches was thoroughly tested and verified by comparisons with the other popular HEQ methods. The experimental results show that for clean-condition training, our approaches yield a significant word error rate reduction over the baseline system, and also give competitive performance relative to the other HEQ methods compared in this paper.
机译:直方图均衡化(HEQ)是最有效的技术之一,已被用于减少训练和测试声学条件之间的不匹配。然而,大多数当前的HEQ方法仅以维度方式执行,并且不允许连续的语音帧之间的上下文关系。在本文中,我们提出了几种新颖的HEQ方法,这些方法利用时空特征分布特征进行语音特征归一化。自动语音识别(ASR)实验是针对Aurora-2标准抗噪ASR任务进行的。通过与其他流行的HEQ方法进行比较,对所提出方法的性能进行了彻底的测试和验证。实验结果表明,对于干净条件的训练,我们的方法在基线系统上产生了显着的单词错误率降低,并且与本文中的其他HEQ方法相比,还具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号