首页> 外文期刊>Pattern recognition letters >Liveness detection for iris recognition using multispectral images
【24h】

Liveness detection for iris recognition using multispectral images

机译:使用多光谱图像进行虹膜识别的动态检测

获取原文
获取原文并翻译 | 示例

摘要

Liveness detection is a necessary step towards higher reliability of iris recognition. In this research, we propose a novel iris liveness detection method based on multi-features extracted from multispectral images. First, we analyze the specific multispectral characteristics of conjunctival vessels and iris textures. To ensure the effective utilization of these characteristics, iris images are simultaneously captured at near-infrared (860 nm) and blue (480 nm) wavelengths. Then we respectively define and measure relative number of conjunctival vessels (RNCV) and entropy ratio of iris textures (ERIT) using 860-nm and 480-nm images. Finally, the feature values of RNCV and ERIT are arranged to form a robust 2-D feature vector. The trained Support Vector Machine (SVM) is used to classify the feature vectors extracted from live and fake irises. Experimental results demonstrate that the proposed method can discriminate between live irises and various types of fake irises with high classification accuracy and low computational cost.
机译:活度检测是提高虹膜识别可靠性的必要步骤。在这项研究中,我们提出了一种基于从多光谱图像中提取的多特征的虹膜活动度检测方法。首先,我们分析结膜血管和虹膜纹理的特定多光谱特征。为了确保有效利用这些特性,同时在近红外(860 nm)和蓝色(480 nm)波长下捕获虹膜图像。然后,我们分别使用860 nm和480 nm图像定义和测量结膜血管的相对数量(RNCV)和虹膜纹理的熵比(ERIT)。最终,布置RNCV和ERIT的特征值以形成鲁棒的2-D特征向量。训练有素的支持向量机(SVM)用于对从实时和假虹膜提取的特征向量进行分类。实验结果表明,该方法能够区分活虹膜和各种类型的假虹膜,分类准确度高,计算成本低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号