首页> 外文期刊>Pattern recognition letters >A semi-supervised feature ranking method with ensemble learning
【24h】

A semi-supervised feature ranking method with ensemble learning

机译:集成学习的半监督特征排序方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of using a large amount of unlabeled data to improve the efficiency of feature selection in high-dimension when only a small amount of labeled examples is available. We propose a new method called semi-supervised ensemble learning guided feature ranking method(SEFR for short), that combines a bagged ensemble of standard semi-supervised approaches with a permutation-based out-of-bag feature importance measure that takes into account both labeled and unlabeled data. We provide empirical results on several benchmark data sets indicating that SEFR can lead to significant improvement over state-of-the-art supervised and semi-supervised algorithms.
机译:当只有少量标记的示例可用时,我们考虑使用大量未标记的数据来提高高维特征选择效率的问题。我们提出了一种称为半监督集成学习指导特征排序方法(简称SEFR)的新方法,该方法将标准半监督方法的袋装集成与基于置换的袋外特征重要性度量结合在一起,标记和未标记的数据。我们在几个基准数据集上提供了经验结果,这些结果表明SEFR可以显着改善现有的监督和半监督算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号