首页> 外文期刊>Pattern recognition letters >An ensemble-based semi-supervised feature ranking for multi-target regression problems
【24h】

An ensemble-based semi-supervised feature ranking for multi-target regression problems

机译:基于集合的半监督特征排名,用于多目标回归问题

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on semi-supervised feature ranking (FR) applications for multi-target regression problems (MTR). As MTRs require prediction of several targets, we use a learning model that includes target interrelations via multi-objective trees. In processing the features for a semi-supervised learning model, transformation or scaling operations are usually required. To resolve this issue, we create a dissimilarity matrix via totally randomized trees to process the unsupervised information. Besides, we treat the split score function as a vector to make it suitable for considering each criterion regardless of their scales. We propose a semi-supervised FR scheme embedded to multi-objective trees that takes into account target and feature contributions simultaneously. Proposed FR score is compared with the state-of-the-art multi target FR strategies via statistical analyses. Experimental studies show that proposed score significantly improves the performance of a recent tree-based and competitive multi-target learning model, i.e. predictive clustering trees. In addition, proposed approach outperforms its benchmarks when the available labelled data increase. (c) 2021 Elsevier B.V. All rights reserved.
机译:本研究重点介绍了用于多目标回归问题的半监督特征排名(FR)应用程序(MTR)。由于MTRS需要预测几个目标,我们使用通过多目标树的目标相互关系的学习模型。在处理半监督学习模型的特征时,通常需要转换或缩放操作。要解决此问题,我们通过完全随机的树木创建一个不相似的矩阵来处理无监督的信息。此外,我们将分割得分函数视为向量,以使其适合考虑每个标准,无论其尺度如何。我们提出了一个半监督的FR方案,嵌入到多目标树木,同时考虑目标和特征贡献。通过统计分析将提出的FR分数与最先进的多目标FR策略进行比较。实验研究表明,提出的分数显着提高了最近基于树和竞争的多目标学习模型的性能,即预测聚类树木。此外,当可用标记的数据增加时,所提出的方法占据了其基准。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号