首页> 外文期刊>Pattern recognition letters >Using scale space filtering to make thinning algorithms robust against noise in sketch images
【24h】

Using scale space filtering to make thinning algorithms robust against noise in sketch images

机译:使用比例空间过滤使细化算法对草图图像中的噪声具有鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

We apply scale space filtering to thinning of binary sketch images by introducing a framework for making thinning algorithms robust against noise. Our framework derives multiple representations of an input image within multiple scales of filtering. Then, the filtering scale that gives the best trade-off between noise removal and shape distortion is selected. The scale selection is done using a performance measure that detects extra artifacts (redundant branches and lines) caused by noise and shape distortions introduced by high amount of filtering. In other words, our contribution is an adaptive preprocessing, in which various thinning algorithms can be used, and which task is to estimate automatically the optimal amount of filtering to deliver a neat thinning result. Experiments using five state-of-the-art thinning algorithms, as the framework's thinning stage, show that robustness against various types of noise was achieved. They are mainly contour noise, scratch, and dithers. In addition, application of the framework in sketch matching shows its usefulness as a preprocessing and normalization step that improves matching performances.
机译:通过引入使稀疏算法对噪声具有鲁棒性的框架,我们将尺度空间滤波应用于二进制草图图像的稀疏。我们的框架可在多种过滤尺度下得出输入图像的多种表示形式。然后,选择在噪声消除和形状失真之间取得最佳平衡的滤波比例。使用性能度量完成标度选择,该性能度量可检测由大量滤波引入的噪声和形状失真引起的额外伪像(冗余分支和线条)。换句话说,我们的贡献是一种自适应预处理,其中可以使用各种稀疏算法,并且其任务是自动估计最佳过滤量以提供整齐的稀疏结果。使用五种最新的稀疏算法作为框架的稀疏阶段的实验表明,可以实现针对各种类型噪声的鲁棒性。它们主要是轮廓噪声,刮擦和抖动。此外,该框架在草图匹配中的应用显示了其作为预处理和规范化步骤的有用性,可提高匹配性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号